You are here

Spatiotemporal Variability Of No2 And Pm2.5 Over Eastern China

Title: Spatiotemporal Variability Of No2 And Pm2.5 Over Eastern China: Observational And Model Analyses With A Novel Statistical Method.
Name(s): Liu, Mengyao, author
Lin, Jintai, author
Wang, Yuchen, author
Sun, Yang, author
Zheng, Bo, author
Shao, Jingyuan, author
Chen, Lulu, author
Zheng, Yixuan, author
Chen, Jinxuan, author
Fu, Tzung-May, author
Yan, Yingying, author
Zhang, Qiang, author
Wu, Zhaohua, author
Type of Resource: text
Genre: Journal Article
Journal Article
Date Issued: 2018-09-07
Physical Form: computer
online resource
Extent: 1 online resource
Language(s): English
Abstract/Description: Eastern China (27-41 degrees N, 110-123 degrees E) is heavily polluted by nitrogen dioxide (NO2), particulate matter with aerodynamic diameter below 2.5 mu m (PM2.5), and other air pollutants. These pollutants vary on a variety of temporal and spatial scales, with many temporal scales that are nonperiodic and nonstationary, challenging proper quantitative characterization and visualization. This study uses a newly compiled EOF-EEMD analysis visualization package to evaluate the spatiotemporal variability of ground-level NO2, PM2.5, and their associations with meteorological processes over Eastern China in fall-winter 2013. Applying the package to observed hourly pollutant data reveals a primary spatial pattern representing Eastern China synchronous variation in time, which is dominated by diurnal variability with a much weaker day-to-day signal. A secondary spatial mode, representing north-south opposing changes in time with no constant period, is characterized by wind-related dilution or a buildup of pollutants from one day to another. We further evaluate simulations of nested GEOS-Chem v9-02 and WRF/CMAQ v5.0.1 in capturing the spatiotemporal variability of pollutants. GEOS-Chem underestimates NO2 by about 17 mu g m(-3) and PM2.5 by 35 mu g m(-3 )on average over fall-winter 2013. It reproduces the diurnal variability for both pollutants. For the day-to-day variation, GEOS-Chem reproduces the observed north-south contrasting mode for both pollutants but not the Eastern China synchronous mode (especially for NO2). The model errors are due to a first model layer too thick (about 130 m) to capture the near-surface vertical gradient, deficiencies in the nighttime nitrogen chemistry in the first layer, and missing secondary organic aerosols and anthropogenic dust. CMAQ overestimates the diurnal cycle of pollutants due to too-weak boundary layer mixing, especially in the nighttime, and overestimates NO2 by about 30 mu g m(-3) and PM2.5 by 60 mu g m(-3). For the day-to-day variability, CMAQ reproduces the observed Eastern China synchronous mode but not the north-south opposing mode of NO2. Both models capture the day-to-day variability of PM2.5 better than that of NO2. These results shed light on model improvement. The EOF-EEMD package is freely available for noncommercial uses.
Identifier: FSU_libsubv1_wos_000444030500003 (IID), 10.5194/acp-18-12933-2018 (DOI)
Keywords: united-states, emissions, time-series, boundary-layer, criteria air-pollutants, hilbert spectrum, north china, ozone, provincial capital cities, tropospheric nitrogen-dioxide
Publication Note: The publisher’s version of record is available at
Persistent Link to This Record:
Owner Institution: FSU
Is Part Of: Atmospheric Chemistry and Physics.
Issue: iss. 17, vol. 18

Choose the citation style.
Liu, M., Lin, J., Wang, Y., Sun, Y., Zheng, B., Shao, J., … Wu, Z. (2018). Spatiotemporal Variability Of No2 And Pm2.5 Over Eastern China: Observational And Model Analyses With A Novel Statistical Method. Atmospheric Chemistry And Physics. Retrieved from