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ABSTRACT 
 

 

The bias adjustment of visually estimated ship winds in the International Comprehensive 

Ocean-Atmosphere Data Set (ICOADS) is addressed through the comparison to the QuickSCAT 

scatterometer equivalent neutral winds. We assume that visually estimated winds and satellite 

scatterometer winds share similar characteristics, which are a function of stress rather than wind 

speed, and treat the estimated ship winds as equivalent neutral winds. Under such an assumption, 

we use statistical analyses to calculate the bias correction for estimated ship winds. Because 

observation practices vary by country and data provider, ICOADS identifies datasets by “deck” 

which is a number that allows for differentiating the source of the records (different deck 

numbers indicate different data collections provided to ICOADS, each which may contain one or 

more sources/countries). Three ICOADS decks 792, 926, and 992 contain the vast majority 

(~90%) of collocated visually estimated ship winds covering the time period November 1999-

October 2009. The Root-Mean-Square difference between these visually estimated ship winds 

and scatterometer winds are 3.0ms
-1

, 2.8ms
-1

 and 2.9ms
-1

 for each major deck respectively. 

Following the methodology of Freilich (1997) and Freilich and Dunbar (1999), we numerically 

show that for lower wind speeds (0ms
-1

-5ms
-1

 in this case) that the random error in the 

component of the visually estimated ship winds causes an artificial appearance of an 

overestimation relative to satellite scatterometer winds. We also extend this statistical artifact test 

to test higher wind speeds (12ms
-1

-18ms
-1

 in this case) through a Monte Carlo approach. An 

apparent slight drop of the conditional sample means relative to reference line is shown to be a 

statistical artifact. These artificial biases are properly accounted in this study. A new bias 

correction, LMS correction, is calculated and also compared to prior corrections such as Lindau 

(1995). This new bias correction is available for wind speeds ranging from 0ms
-1

 to 17ms
-1

, 

because there are too few spatial and temporal collocated matches at wind speed greater than 

17ms
-1

. We are limited in our ability to perform the adjustments required for intercallibration 

because when comparing visual winds to scatterometer winds the necessary wind speed 

observations are rare and small in magnitude.
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CHAPTER 1 

 

INTRODUCTION 
 

 

The Beaufort wind scale, devised in 1805 by Sir Francis Beaufort, is used by seamen and 

coastal observers to estimate wind speed. It includes 13 classifications (0 to 12) that describe 

various wind conditions. Initially, the 13 classes did not refer to wind speed but the sails 

behavior of a frigate, which is related to qualitative wind conditions. In 1900s, the descriptions 

were changed from how the sails behaved to how the sea behaved. It is notable that Beaufort 

scale is based on the visual and subjective observation of the sea surface condition, which is not 

an exact and objective scale. The estimated numeric wind speed for a given Beaufort value is 

usually determined from the midpoint value of the corresponding wind speed range. However, 

different observer could estimate different wind speed, even based on the same sea surface 

condition and practice. For more than a century, marine meteorologists have attempted to design 

a precise conversion of the Beaufort estimates scale into numeric wind speed. Many have 

developed Beaufort equivalent scales — WMO1100 (WMO 1970), CMMIV (WMO 1970), 

UWM (daSilva et al. 1995), Lindau (1995), Isemer (1992), Kaufeld (1981), Cardone (1969)—

which were compared in Kent and Taylor (1997). According to Lindau (1995), any Beaufort 

equivalent scale should consider the universal relationship between the Beaufort force and the 

wind speed. This can be achieved through an orthogonal regression with an equal error variance 

in both the independent variable and dependent variable. Most of the previously published 

Beaufort equivalent scales cannot be described as equivalent scales due to the fact that they do 

not account for the different structures of error variances. This is because in one-way regression, 

either the variance of wind measurements or the variance of the Beaufort estimated winds are 

minimized. Of the Beaufort equivalent scales compared, the WMO 1100 conversion is the most 

commonly used in International Comprehensive Ocean-Atmospheric Data Set (ICOADS), but it 

is biased because it applies one-way regression to calculate the equivalent scales. In other words, 

the regressions are either regression of Beaufort force on the wind speed or the opposite 

regression of the wind speed on each Beaufort force. Alternatively, Kent and Taylor (1997) 

found that the Beaufort scale derived by Lindau, which has a more rigorous derivation and a 
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distribution closest to the distribution of the anemometer winds (slope=0.98, offset=-0.17ms
-1

), is 

preferred.  

ICOADS is considered to be the most complete and extensive archive of historical in situ 

marine meteorological observations available. Changing measurement technologies, such as 

more merchant ships equipped with anemometers and larger ships with anemometers at greater 

heights, have resulted in a reduction in estimated winds and caused a spurious increasing trend in 

the climate wind speeds (Ramage, 1987; Wright, 1988; Thomas et al., 2008). These 

technological changes have had a physically and statistically significant effect on the accuracy of 

wind measurements, if they are assumed to correspond to the WMO-mandated winds at a height 

of 10m above the surface (Thomas et al., 2008). ICOADS began in the United States and has 

grown to be what is currently the most comprehensive international dataset, incorporating a 

variety of observations from numerous countries and different research groups. Over the years, 

many significant contributions have been made to the ICOADS (e.g. the UK Met Office and 

NOAA Climate Data Modernization Program (CDMP) [Dupigny-Giroux et al., 2007] provided 

digitized and quality-checked data from logbooks (Woodruff et al., 2011)). Unfortunately, the 

changing measurement technologies, the multiple archive sources, and many significant 

historical events mean that ICOADS is not uniform to a wide range of users. To enhance its 

homogeneity, an ICOADS value-added database (IVAD) is being developed and will be 

implemented following the release of ICOADS Version 3.0 (anticipated May 2016). This will 

result in an advanced version of ICOADS, which will be accessible to the wider research 

community with recommended adjustments. The IVAD will add missing metadata (e.g., 

anemometer heights) and adjustments to the existing dataset, including adjustments to the 

WMO-mandated standard of 10m above the ocean surface (technically, above the displacement 

height, but this is assumed to be equal to the ocean surface). These adjustments are designed to 

remove systematic errors in the dataset (e.g., bucket observations of sea temperature could be 

adjusted to a skin temperature). In the future, the IVAD project will provide embedded bias 

adjustments for observation systems, with advanced quality control and improved uncertainty 

estimations.  

To achieve the goals of intercalibration and adjustment, scientists around the world have 

been pooling their resources and sharing their collective thoughts. The IVAD project at FSU has 

focused mainly on calculation of the bias adjustments for visually estimated ship winds from 
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ICOADS and on creating a prototype of an IVAD attachment with the recommended 

adjustments. The FSU component of this project involves the adjustment of winds to a 10m wind 

on the same scale as satellite winds. The goal of this study is to improve the conversion of 

Beaufort estimated winds to geophysical values with scientific units (ms
-1

 in this case). This 

study specifically focuses on the adjustments to visually observed ship winds.  In many ways, 

these winds are easier to adjust to satellite winds than anemometer winds; conversions to wind 

speed at a height of 10m have already been developed and estimated ‘winds’ are sensitive to 

variability in the form of a stress rather than an anemometer measurement. That is, they are 

winds relative to surface ocean currents and, given a stress (or a friction velocity), can be 

neutrally adjusted to a height of 10m, similar to the characteristics of satellite winds. Satellite 

winds are presently the best intercalibrated winds available (able to identify regional trends in the 

mean of 10ms
-1

decade
-1

). Thus, we adjust to that standard even though satellite winds are 

equivalent neutral winds (Kara et al. 2008) as opposed to actual winds. Equivalent neutral winds 

are explained in Chapter 2. 

Freilich (1997) applied a statistical artifact test at lower wind speeds to identify ranges 

affected by random component errors when one dataset is tuned to another dataset. Here, 

according to the argument from previous work (Freilich, 1997; Freilich and Dunbar, 1999), the 

author use Monte Carlo simulation to test the artificial bias at both high and low wind speeds. 

The results (Chapter 4) indicate that the random component error has a physically and 

statistically significant effect at lower wind speeds but only a small effect at higher wind speed. 

The rest of the paper is organized as follows: Two datasets (ship winds and satellite 

scatterometer winds) in this study, including quality control (QC) and equivalent neutral wind, 

are described in Chapter 2. Chapter 3 introduces the methodologies involved in this project. 

Results and discussions, which resulted in a new bias correction for visually estimated ship 

winds, are described in Chapter 4.
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CHAPTER 2 

 

DATA 
 

 

Two types of wind datasets are used in this study: visually estimated ship wind speed 

data from ICOADS Release 2.5 (Woodruff et al., 2011) and scatterometer wind speed data from 

the version 3 JPL QuickSCAT dataset. Location and position within each dataset are also used to 

collocate the wind observations. 

 

2.1 ICOADS visually estimated ship wind speed dataset 

The ICOADS R2.5 (NCDC, 1984; http://rda.ucar.edu/datasets/ds540.0/) has 261 million 

records in the International Maritime Meteorological Archive (IMMA) format, covering the time 

period 1662-2007 with a real time extension through present month (2008-present). Initial data 

analysis in this study focuses on the time period 1970-2007, in order to correspond with the 

marine air temperature adjustments developed by the National Oceanography Center (Berry et al., 

2004). Our goal in this study is to develop an estimated ship wind speed adjustment to be 

provided as an ivad attachment in the IMMA format for each ICOADS record, and eventually 

embedded into an advanced version of ICOADS (ICOADS R3.0). 

The reports in ICOADS are supplied by volunteer observing ships (VOS) and other 

platforms such as moored and drifting buoys. In this paper, we consider only those records from 

ships, which include the following platform types (PTs) as categorized by ICOADS: merchant 

ships or foreign military (PT=1); ocean station vessels, off station or station proximity unknown 

(PT=2); ocean station vessels, on station (PT=3); lightships (PT=4), or ships (PT=5). Other data 

records from non-ship platform are excluded, these are the following: US Navy or ‘deck’ log, or 

unknown (PT=0), moored buoy (PT=6), drifting buoy (PT=7), ice buoy (PT=8), ice station 

(manned, including ships overwintering in ice) (PT=9), oceanographic station data (bottle and 

low-resolution CTF/XCTD data) (PT=10), mechanical/digital/micro bathythermograph 

(MBT)(PT=11), expendable bathythermograph (XBT) (PT=12), Coastal-Marine Automated 

Network (C-MAN) (NDBC operated) (PT=13), other coastal/island station (PT=14), fixed ocean 

platform (PT=15), tide gauge (PT=16), high-resolution Conductivity-Temp.-Depth 

(CTD)/Expendable CTD (XCTD) (PT=17), profiling float (PT=18), undulating oceanographic 
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recorder (PT=19), autonomous pinneped bathythermograph (PT=20) or glider (PT=21) 

(Woodruff et al., 2015).  

In ICOADS, wind speed indicator (WI) represents the method of wind observation. If 

known, it is provided by the wind speed indicator flag, which indicates the original units (knots, 

ms
−1

, or Beaufort Force) and whether the wind was estimated or measured. This study uses all 

reports associated with visually estimated ship wind from ICOADS R2.5; in other words, all 

records from ships with a WI that defines the wind speed as “estimated” (i.e., WI = 0 (Meter per 

second, estimated), 2 (Estimated (original units unknown)), 3 (Knot, estimated), 5 (Beaufort 

force (conversion of original data or based on documentation)), or 6 (Estimated (original units 

unknown) or unknown method)) (Woodruff et al., 2015). One of these values is ambiguous, 

WI=6, which indicates the method is estimated or unknown (Slutz et al., 1985). For this study, 

we assume that most of the ambiguously flagged reports were estimated and thus assign all data 

with this flag to the estimated winds (similar to Thomas et al., 2008). Those records with a WI 

that defines the wind speed as “measured” are excluded (i.e., WI=1 (meter per second, obtained 

from anemometer (measured)), 4 (knot, obtained from anemometer (measured)), 7 (measured 

(original units unknown)), or 8 (high-resolution measurement (e.g. hundredths of a meter per 

second))) (Woodruff et al., 2015). 

All the visually estimated ship winds in IMMA format are extracted from ICOADS R2.5 

covering the time period 1970-2007. Initially, we expected all visually estimated ship winds to 

fall into categories the same as those in the Beaufort scale, which categorizes wind speed values 

into 13 discrete bins allowing the Lindau scale to be directly applicable to all visually estimated 

ship wind. However, only ship winds with WI=5, commonly referred to as Beaufort winds, 

approximate the ‘13 value’ distribution with those smaller peaks (Figure 1). Because observation 

practices vary by country and data provider, ICOADS identifies datasets by “deck” which is a 

number that allows for differentiating the source of the records (different deck numbers indicate 

different data collections provided to ICOADS, each which may contain one or more 

sources/countries). The search for this period reveals only two decks (761 - Japanese Whaling 

Ship Data (CDMP/MIT digitization, 1946-1984 and 792 - US National Centers for 

Environmental Prediction (NCEP) BUFR GTS: Ship Data) with WI=5 records. Since the 

majority of these observations came from deck 761 (4,257 observations vs 9 for deck 792), the 

distribution of the wind speeds with WI=5 are categorized by this deck determined that the 
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Lindau’s (1995) scale can be applied to deck 761 for the prototype ivad attachment. Figure 3 

shows the distribution of wind speed for deck 761 with WI=5. The figure illustrates a ‘13 value’ 

distribution with 12 discrete peaks from force 0-11 (force 12 observations are very rare and thus 

were not observed). This indicates the original Beaufort values use the WMO 1100 scale 

(Simpson 1906), which is the most commonly used Beaufort equivalent scale in ICOADS.  

 

 

Figure 1. Histogram of wind speed with WI=5, for ships only. The counts of smaller peaks are labeled.  

 

 

Figure 2. Histogram of wind speed with WI=5 with deck 761. The count of each peak is labeled. 

 

Applying the Lindau (1995) scale is a straightforward process that involves comparing 13 

wind speed values in Lindau (1995) scale to the values of wind speed with WI=5 for deck 761 

(Table 1). According to Lindau (1995), the corrected value should be this new value obtained by 
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applying the Lindau scale; this corrected value should replace the existing wind speed value in 

ICOADS. Therefore, Lindau’s (1995) correction value is the difference between the Lindau 

(1995) scale and the WMO 1100 scale as shown in the bottom row of Table 1. 

However, distribution of wind speed values with WI=0, 3 and 6 (Fig. 4a, b, and c) shows 

a more scattered wind distribution. WI=2 is not shown in this study due to the limited number of 

reports available. 

Because of the varied national observation practices, the following histograms of wind 

speed distribution (Fig. 5, 6, and 7) for WI= 0, 3, and 6 respectively are categorized by major 

decks and illustrate that wind speed values fall into more discrete bins than the 13 bins associated 

with the Beaufort scale. In Figure 5a, it is shown that deck 732 had many more observations at 

0ms
-1

 and 4ms
-1 

than in the other wind speed values. Whereas in Figure 5b, the wind speed 

values from deck 792 show (1) fewer observations at 0ms
-1

 as compared to other wind speed 

values, and (2) wind speed observations at 5ms
-1

 are the most prevalent in this dataset. Figure 5c 

shows a very different wind speed distribution for deck 888 with upward of 20 or more primary 

peaks and numerous smaller secondary peaks. It is notable that many of the visual reports have a 

similar structure with 2 or more small peaks for every large peak in Figure 5c. This can be 

attributed to the differences in observation practices. 

 

Table 1. Applying the Lindau’s (1995) scale. Lindau (1995) values are converted to ms
-1

 by multiplying 

by 0.5144 and rounding to one decimal place. Deck 761 contained no wind speeds associated with 

Beaufort force 12. 

 

BFT 
WMO 1100/WI=5, 

deck 761 (ms
-1

) 
Lindau (1995; ms

-1
) 

Lindau’s (1995) 

correction (ms
-1

) 

0 0.0 0.0 0.0 

1 1.0 1.2 -0.2 

2 2.6 2.7 -0.1 

3 4.6 4.6 0.0 

4 6.7 7.2 -0.5 

5 9.3 9.7 -0.4 

6 12.3 12.1 0.2 

7 15.4 14.6 0.8 

8 19.0 17.2 1.8 

9 22.6 20.2 2.4 

10 26.8 23.4 3.4 

11 30.9 27.1 3.8 

12 -- 31.4 -- 
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                                (a) 

 
                                (b) 

 
                                (c) 

 

Figure 3. Histogram of wind speed with (a) WI=0 (Meter per second, estimated; (b) WI=3 (Knot, 

estimated); (c) WI=6 (Estimated (original units unknown) or unknown method)). 
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While all observers are instructed to give an upper and lower limit plus a mid value, the 

various countries and data providers handle this differently. For instance, the instructions given 

to US observers have slightly different midpoints than the instructions given to UK observers. 

This results in the appearance of some smaller peaks grouped closely together. Figures 5d and 5e 

show wind speed observations for decks 926 and 892, but, unfortunately, datasets from these two 

decks do not display the expected ‘13 value’ distribution as well. It is found that the histograms 

of wind speed distribution with WI=3 and WI=6 for each major deck are similar to those with 

WI=0 (Figure 5) in that they reveal a less sparsely filled wind speed distribution than the 

anticipated ’13 value’ distribution. 

 (a) Deck 732                                                                                      (b) Deck 792 

 
  (c) Deck 888                                                                                     (d) Deck 892 

 
  (e) Deck 926                                                            

        

 

Figure 4. Histogram of ship wind speed with WI=0 categorized by major decks. (a) Deck 732: Russian 

Marine Met. Data Set (MORMET) (rec’d at NCAR). (b) Deck 792: US National Centers for 

Environmental Prediction (NCEP) BUFR GTS: Ship Data. (c) Deck 888: US Air Force Global Weather 

Central (GWC). (d) Deck 892: US National Centers for Environmental Prediction (NCEP) Ship Data. (e) 

Deck 926: International Maritime Meteorological (IMM) Data. 
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 (a) Deck 254                                                                                      (b) Deck 667 

 
  (c) Deck 792                                                                                      (d) Deck 892  

 
 (e) Deck 926                                                                                      (f) Deck 927 

 

Figure 5. Histogram of wind speed with WI=3 categorized by major decks. (a) Deck 254: UK Met. Office 

(MetO) Main Marine Data Bank (MDB). (b) Deck 667: Inter-American Tropical Tuna Commission 

(IATTC). (c) Deck 792: US National Centers for Environmental Prediction (NCEP) BUFR GTS: Ship 

Data. (d) Deck 892: US National Centers for Environmental Prediction (NCEP) Ship Data. (e) Deck 926: 

International Maritime Meteorological (IMM) Data. (e) Deck 927: International Marine (US-or foreign-

keyed ship data, 1970-2007) 

 

As previously mentioned, we expected all visually estimated ship winds to fall into 

categories the same as those in the Beaufort scale. However, reviewing the histograms makes it 

clear that identifying actual Beaufort winds (outside of WI=5) within the ICOADS records is 

challenging and the application of Lindau scale on all visually estimated ship winds is 

problematic. This can be explained by the fact that in many cases, as a result of observer 

subjectivity or varying observation practices, no documentation or valid information exists to 

confirm which Beaufort scale the observers used and how they converted it to numeric wind 

speed. Because different countries and data providers use different Beaufort scales and vary in 

their instructions to observers, the Lindau (1995) correction is not applicable. The 13 values of 

Lindau’s (1995) correction would force too much data to be excluded. 
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  (a) Deck 128                                                                                     (b) Deck 555 

 
 (c) Deck 888                                                                                       (d) Deck 892 

 
 (e) Deck 927 

        

 

Figure 6. Histogram of wind speed with WI=6 categorized by major decks. (a) Deck 128: International 

Marine (US-or foreign-keyed ship data; 1950-1978). (b) Deck 555: US Navy Fleet Numerical 

Meteorology and Oceanography Center (FNMOC; Monterey) Telecom. (c) Deck 888: US Air Force 

Global Weather Central (GWC). (d) Deck 892: US National Centers for Environmental Prediction (NCEP) 

Ship Data. (e) Deck 927: International Marine (US-or foreign-keyed ship data; 1970-2007). 

 

2.2 Scatterometer wind speed dataset 

The Jet Propulsion Laboratory’s QuikSCAT Level 2B (L2B) Version 3 dataset (SeaPAC, 

2013) contains the latest reprocessed version of Level 2B ocean surface wind vector retrievals 

from the QuikSCAT scatterometer, with a non-uniform grid at 12.5km pixel spacing within the 

observational swath. This dataset is stored in NetCDF format and covers approximately 90% of 

the global oceans (ice-free) daily. Several improvements were made in Version 3 (Fore et al., 

2014) as compared to the previous JPL processing of the QuickSCAT L2B wind speed dataset. 

The JPL QuickSCAT version 3 improvements include:  
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“(1) Changes to measurement binning that decrease noise and other seemingly random 

errors and to reduce gaps in the 12.5 km L2B wind retrievals.  

(2) An improved geophysical model function (GMF) to model the effect of wind on 

backscatter.  

(3) A neural network approach to correct rain contaminated wind speeds. 

(4) Estimation and removal of cross-track dependent wind speed biases from the wind 

retrievals. The 12.5 km binning resolution enables users to obtain wind vector retrievals 10 km 

closer to shore when compared to the 25 km L2B dataset (only available in versions 1 and 2).” 

(JPL, 2013) 

These improvements provide us with more potential collocated matches for 

intercalibration purposes and improve the quality of the dataset with less rain contamination, 

closer collocation and a less of a mismatch in sampling volume between in situ and satellite data. 

 

2.3 Equivalent neutral wind 

The actual wind speed is approximately logarithmically proportional to the height above 

local sea level. In this log-profile, the atmospheric stability plays a significant role. As such, the 

wind profile can be written as 

                                                             (2.3.1) 

Where is the wind speed as a function of height ( ), is the wind speed at the ocean surface, 

u* is the square root of the kinematic stress (parallel to U – Us), and is the von Kármán 

constant. is the stability function for momentum (zero for neutral condition in this study), L is 

the Monin–Obukhov length, and is the roughness length for momentum.  

Satellite scatterometer winds are calibrated to equivalent neutral winds (Liu and Tang, 

1996; Verschell et al., 1999; Mears et al., 2001) rather than actual wind speeds regarding to the 

atmospheric stratification. In the most commonly preferred definition (Ross et al., 1985; Liu and 

Tang, 1996; Verschell et al., 1999), the equivalent neutral wind is only related to the stress and 

roughness length consistent with the observed atmospheric stratification (Kara et al., 2008), but 

the atmospheric stratification term in the modified log-wind profile is set to zero. This definition 

is consistent with scatterometry, which is more stress-like than wind-like. This is because that by 

sending microwave to the ocean surface from scatterometer and measuring the strength of 

U(z)−U
S
= (u

*
/ k)ln(z / z

0
)+ (u

*
/ k)ϕ(z, z

0
,L)

U z U
S

k

ϕ

z
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backscatter signal, the backscatter signal power is responding to the surface waves or ripples (i.e., 

surface roughness), which are equilibrium with the wind stress (Liu and Tang, 1996). Therefore, 

the equivalent neutral winds are defined as follows: 

                                                                
U
10EN

= (u
*
/ k)ln(10 / z

0
)

                                      
(2.3.2) 

where u
*
and z

0
 are calculated beforehand considering atmospheric stratification and the surface 

current. 

The scatterometer and visual observations are all based on surface stress observations. 

Because we lack the information to account for stability-related modifications to the adjustment 

from the surface to 10m, a neutral adjustment is used. For this study, we treated the visually 

estimated ship winds as equivalent neutral winds and evaluate the accuracy of this assumption. 

 

2.4 Quality control 

Quality control (QC) has been applied to the QuickSCAT scatterometer wind speed 

dataset and ICOADS R2.5 visually estimated ship wind dataset respectively by removing the 

poor quality data using QC flags provided with each respective dataset.  

QuikSCAT is a Ku-Band (13.4 GHz/2.24 cm) microwave scatterometer that measures the 

ocean surface roughness. The Ku-band scatterometer can be sensitive to rain contamination 

(Weissman, 2012) under some wind and rain conditions. These errors in wind retrieval occur 

because of the scattering and absorption of the transmission energy of the scatterometer (Draper 

and Long 2004); changing ocean surface roughness by the rain (Sobieski et al. 1999; Weissman, 

2008); and, energy backscattered from rain (Weissman, 2008). Rainflags have been developed 

for QuickSCAT (Portabella and Stoffelen, 2001; Huddleston and Stiles, 2000; Boukabara et al., 

2002) to identify those data with rain contamination and these rain flags appear to work well 

(Hoffman et al., 2004) for calibration purposes, meaning that they aggressively remove data that 

might be rain contaminated. One problem with this approach is that very strong winds are often 

accompanied by rain (JPL, 1999). To improve the quality of datasets, based on recommendations 

from these previous works, all rain flagged scatterometer data have been removed from this 

study. 

For ship winds, each record in the ICOADS R2.5 contains an Icoads attachment, which 

contains one of QC elements denoted as ‘WNC’ flags. To improve the quality of dataset for 



 

 14 

calibration purposes, each ICOADS record extracted with a WNC flag denoted as ‘erroneous’ is 

excluded.  
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CHAPTER 3 

 

METHODOLOGIES 
 

 

Following a thorough examination of wind values denoted as “estimated” in ICOADS, 

the author determined that a new bias correction could be calculated by comparing satellite 

scatterometer winds and collocated visually estimated ship winds. Due to the sensitivity of the 

SeaWinds scatterometer on the QuickSCAT to ocean surface changes, satellite scatterometer 

winds are calibrated to equivalent neutral winds (Liu and Tang, 1996; Verschell et al., 1999; 

Mears et al., 2001) rather than actual wind speeds. The conversion from actual wind to 

equivalent neutral winds is widely accepted, assuming additional information is available: SST, 

air temperature, humidity, surface pressure, stress or sea state, and surface current. Previous 

work (e.g. Bourassa et al., 2003 JGR; May and Bourassa, 2010) showed that QuickSCAT winds 

are very accurate, with root-mean-square (rms) differences between the datasets of roughly 1ms
-1

. 

This difference represents an upper bound on the uncertainty; with some of the differences 

coming from errors in buoy data and from mismatches in the spatial/temporal scales of buoy and 

satellite data (Stoffelen, 1998). In this study, ship-estimated winds are presumed to be sensitive 

to geophysical variability in the same manner as equivalent neutral winds. This is supported by 

the results of our comparison and these results will allow a satellite-like wind climatology to be 

extended back in time (for decades) in the data rich areas (e.g., the North Atlantic Ocean). 

 

3.1 Collocation between satellite scatterometer winds and visually estimated ship 

winds 

The key properties of collocation are: 

        1. Time threshold: 30min (1800s); 

        2. Distance threshold: 25km. 

The steps for the collocation are: 

        1. Finding all data matches within 30 minutes of each other;  

        2. Of the data matches found in step 1, identifying the ones that match in space 

within 25km; 

        3. Of the data matches found in step 2, finding the closest match in space.  
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We limited the temporal and spatial window to 30 min and 25 km respectively in order to 

obtain the necessary number of high quality collocated comparison matches. By using the above 

space/time procedure to find the closest spatial match, we can deduce the systematic error in the 

inter-calibration between the satellite scatterometer winds and collocated estimated ship winds. 

 

Figure 7. Map for collocated estimated ship winds. Red dots are associated with location of collocated 

estimated ship winds. The limited spatial sample is related to the satellite coverage at the times of day of 

the ship observations. 

 

3.2 Modification of the calibration due to statistical artifacts 

Freilich and Dunbar (1999) and Freilich (1997) used buoy data and scatterometer data to 

show that noise in one dataset can cause the appearance of a bias at lower wind speeds (0ms
-1

 to 

3ms
-1

). Freilich (1997) numerically examine this problem by treating a buoy dataset as error-free 

dataset (including intercalibrated with the satellite dataset) and adding noise to it to match the 

distribution of data in the satellite dataset. They found that the appearances of artificial biases 

occur near the boundaries of the parameter (specifically a wind speed of 0ms
-1

). This is because 

that a data density shift occurs near the lower boundary of wind speed. Because of the 

nonnegative constraint on the wind speed, the artificial bias causes those combined vector 

components negative values to change to positive values. This problem could also occur where 

there is a very large shift in data density due to the noise, which is similar to a boundary. 

In Freilich’s (1997) model, the noisy vector wind speed can be numerically simulated as 

an error-free observation (i.e., perfectly inter-calibrated) plus random noise for each of the vector 

components, such that 

S
ni
= [(S

i
cosθ

i
+δ

i
)
2
+ (S

i
sinθ

i
+δ

i
)
2
]
1
2                                (3.2.1) 

Where  is normal distributed random noise, is uniformly distributed wind direction,  δ θ
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S
ni

 is ith the noisy wind speed, and S
i
 is the ith noise-free wind speed; Random error can cause 

sign changes in the components of the vector. However, under nonnegative constraint (e.g., Eq. 

3.2.1) on the wind speed, vector components are always combined to determine a positive wind 

speed. When paired data are binned in terms of one dataset, the result is that the average value of 

the other dataset increases near a boundary. We are dealing with paired data for which error is 

added to only one of the pair, and we are binning according to the data to which errors have been 

added. Errors that reduce the value used in sorting cause the unmodified value of the paired data 

to be added to a lower bin, resulting in an overestimation at that wind speed. If the unmodified 

data are uniformly distributed and away from a boundary, these biases are cancelled out by 

symmetric noises (like number of data points moved in each direction along the number line). 

Near boundaries, the shifts towards the boundary are not compensated and the binned average of 

the paired and unmodified data near a lower boundary is greater than expected from the data 

used for sorting. Therefore, there is the false appearance of a bias near the lower boundary, with 

the magnitude of the apparent bias and the range of which there are substantial biases dependent 

on the noise of the data used to sort (i.e., the data on the x-axis). These biases are called false 

biases because they can be explained by random error in the data.  

This leads to the calculation of sample conditional means of the y-axis variables for each 

bin, that might not match the x-axis values. Sample conditional means of the y-axis mean, which 

are nonlinear functions of x-axis wind speed and the noise are not well described by a simple 

linear fit (e.g., linear correlation), unless the noise in the x-axis variable is small. The biases 

found in this type of comparison allow us to calculate the artificial effect of the random 

component error on biases near a boundary. 

 

3.3 Assessment of systematic errors as a function of wind speed 

When considering the slope, if the error/noise variance in both variables to be regressed 

is not equal, the effect of the error/noise on the slope can be predicted (Kent and Taylor, 1997). 

Due to larger error/noise variance in the least accurate variable, the slope of the regression of the 

least accurate variable on the most accurate variable will be less underestimated than the slope of 

opposite regression (Kent and Taylor, 1997). The intercalibration assumes both wind speed data 

sets are unbiased. In the case of a least squares best fit (equation 3.3.1), the slope is only related 

to the covariance of both data sets (which is influenced by noise) and the variance of the x-axis 
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data. This means that the noise on the x-axis (if large enough to be noticeable) has more 

influence than the noise on the y-axis. From a mathematical perspective, in the following 

formula
 1
 when flipping both axes (in other words switching the ‘x’ associated with the satellite 

scatterometer wind speed and the ‘y’ associated with the collocated visually estimated ship wind 

speed) the numerator is constant, whereas the denominator is dependent on the variance of noise 

in each wind speed dataset. 

slope =
(xi − x)(yi − y)

i−1

n

∑
(xi − x)

2

i−1

n

∑
=
Cov[x, y]

Var(x)
                                       (3.3.1)

 

 

                                              

Applying this form to the above discussion, we have: 

 

 

slopescat =
Cov[wscat,wship ]

Var(wscat )
> slopeship =

Cov[wship,wscat ]

Var(wship )                     

(3.3.2) 

 

Where  denotes the slope of the linear fit line when the satellite scatterometer winds are 

plotted on the horizontal axis and the collocated estimated ship winds are plotted on the vertical 

axis, slopeship  denotes the slope of the linear fit line when the satellite scatterometer winds are 

plotted on the vertical axis and the collocated estimated ship winds are plotted on the horizontal 

axis, wship denotes the collocated estimated ship wind speed dataset, and w
scat

denotes the satellite 

scatterometer wind speed dataset. slopescat  is greater than slopeship , which indicates that the 

variance of noise in the scatterometer wind speed dataset is less than the variance of noise in the 

estimated ship wind speed dataset. This supports a conclusion that the satellite scatterometer 

wind speed dataset is much more accurate than the collocated estimated ship wind speed dataset. 

When dealing with paired data, the slope is most consistent when the noise variance in each 

variable is the same. When they are substantially different, it is best to plot the most accurate 

observations as independent variables and the least accurate observations as dependent variables. 

Under such conditions, the increased variance in the independent variable causes the artificial 

appearance of a bias. 

                                                
1
 This formula is available from Wikipedia 

(https://en.wikipedia.org/wiki/Simple_linear_regression) 

slopescat
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3.4 Significance test 

Statistical significance test is used to assess the statistical value of the bias adjustments 

that are calculated herein. In this study, we assume random error only, which is normally 

distributed. This technique can address the question: Is the difference between the bin of 

artificial error-free ship winds and satellite winds large enough to confidently be identified as a 

bias? This can be determined by the difference between the median of collocated ship winds and 

mean of satellite scatterometer winds within each 0.5ms
-1

 bin. It is used to examine if the biases 

in individual bins are statistically significant. To conduct the hypothesis test for the each bin, we 

use the two-tailed t-statistic, which follows a t-distribution; and the value of α is set to 0.01. If 

the calculated P-value is less than or equal to α, then it is “unlikely,” which indicates rejection of 

the null hypothesis, which is associated with the artificial bias can be confidently identified as a 

bias, and application of the bias correction. Otherwise it is “likely,” which indicates no bias 

adjustment needed.
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CHAPTER 4 

 

RESULTS AND DISCUSSION 
 

 

This project compared satellite scatterometer wind speed data from version 3 JPL 

QuickSCAT to collocated ship winds data from ICOADS R2.5 by plotting the most accurate 

satellite winds as independent variables and the least accurate ship winds as dependent variables 

(Kent and Taylor, 1997). Since wind speed dataset from QuickSCAT was only available for the 

period November 1999 to October 2009, this comparison is limited to that time period. A search 

of the collocated data pairs (6,782 pairs) revealed three decks (792, 926, and 992) with a high 

frequency (~90%) of estimated wind observations:  

1. Deck 700: UK Met. Office VOSClim GTS BUFR Data (2 observations). 

2. Deck 792: US National Centers for Environmental Prediction (NCEP) BUFR 

GTS: Ship Data (2,404 observations). 

3. Deck 874: Shipboard Environmental (Data) Acquisition System (SEAS) (223 

observations) 

4. Deck 926: International Maritime Meteorological (IMM) Data (3,098 

observations). 

5. Deck 927: International Marine (US- or foreign-keyed ship data) (55 observations) 

6. Deck 992: National Climate Data Center (NCDC) GTS: Ship Data (1,000 

observations). 

Because of the varied national observation practices, we categorized the collocated match 

pairs between satellite scatterometer winds and estimated ship winds by these three decks (792, 

926, and 992). Figures 9a, b and c show an apparent overestimation of collocated estimated ship 

winds to satellite scatterometer winds at the lower wind speeds in those three decks. The density 

contours indicate that wind speed ranging from 5ms
-1

 to 10ms
-1

 are the most common in this 

study; this is also consistent with the most frequently observed wind speed range in the real 

world. However, these density contours do not closely follow the linear-fit line, which 

demonstrates that the bias adjustments cannot be reasonably addressed by simple linear 

regression and different bias correction values for different ranges of wind speed may be needed. 

This is because the intercept of linear fit at the vertical axis can be explained by artificial bias, 
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which is a false appearance of bias and can be explained by purely random error in the vector 

component of wind speed.   

                                                     (a) Deck 792     

 
 (b) Deck 926                                                                                       (c) Deck 992  

 
Figure 8. The density plot for the collocation wind speed scatter plot categorized by major decks for the 

period Nov. 1999-Oct. 2009. The contour line indicates density contours, which are associated with the 

number of data points fall into a 1ms
-1

 x 1ms
-1

 box. The green line is reference line. The red line is the 

simple linear fit line. (a) Deck 792; (b) Deck 926; (c) Deck 992; 

 

In addition, whisker boxplots are plotted for each deck in Figures 9a, b, and c. The 

common features of these three figures are (1) a large overestimation at low wind speeds of 

collocated estimated ship winds versus the scatterometer winds; and (2) collocated match pairs at 

higher wind speed area (e.g., in the range of 12ms
-1

 to 18ms
-1

) are rarely found in the collocation, 

and most of wind speeds are distributed below 12ms
-1

. The medians on these whisker boxplots 
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for wind speeds (greater than 5ms
-1

 for decks 792 and 992, and greater than 3ms
-1

 for deck 926) 

largely follow the reference line.  

                                                                    (a) Deck 792      

 
 (b) Deck 926                                                                                       (c) Deck 992 

 

Figure 9. The boxplots for the three different decks (792, 926, and 992). Each of the whisker boxes is 

associated with the number of data points in a range of 2ms
-1

 of scatterometer wind speed. The width of 

each whisker box is proportional to the data points within each 2ms
-1

 bin. (a) Deck 792; (b) Deck 926; (c) 

Deck 992. 

 

Freilich (1997) found a way to interpret this overestimation at lower wind speed by 

comparing the collocated buoy winds to the scatterometer winds. The author found that random 

error in the component of vector winds would significantly change the distribution of wind speed 

at lower wind speed area (0ms
-1

 to 3ms
-1

), which can be considered to be artificial bias due to the 

non-negativity of wind speed. This false appearance of bias is often misrepresented as systematic 

calibration error. Therefore it is necessary to investigate the binned average within each 0.5ms
-1

 

bin (conditional sample mean) near the lower boundary of wind speed in order to distinguish 
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artificial bias from systematic error. In cases such as this, the conditional sample mean of vector 

ship winds increases near the lower boundary within each 0.5ms
-1

 bin of the satellite 

scatterometer winds 

 Uncertainty estimation for each deck (792, 926 and 992) indicates the Root-Mean-

Square (RMS) difference between satellite scatterometer winds and collocated ship winds are 

3.0ms
-1

, 2.8ms
-1

 and 2.9ms
-1

, respectively. Therefore, we can numerically and statistically 

simulate the comparison between the scatterometer winds and collocated estimated ship winds 

for each major deck (792, 926, and 992) by generating a uniform distributed dataset, and adding 

noise following normal distribution to match the collocated ship winds. This technique is known 

as “histogram matching.”  

In Figure 11, the data from decks 792 and 992 reveal close matches between the medians 

of boxplot and the black dots associated with conditional sample mean within each 0.5ms
-1

 bin. 

This provides us with an estimate of the artificial bias associated with random component error 

at the lower boundary of wind speed (0ms
-1

). The data from deck 926 still shows that biases exist 

in that wind speed dataset (as displayed by the difference between the conditional means and the 

medians in each bin). This inconsistency in the analyses could be because of a non-uniform 

uncertainty across the dataset for deck 926. Investigation this complication would require much 

more detailed assessment of the data going into this deck, and how it differed from other decks. 

Using the previous argument for testing low wind speeds, we can extend the artifact bias 

argument to test higher wind speeds (in this case, 14ms
-1

 to 20ms
-1

), which depends upon the 

collocation between satellite winds and collocated ship winds.  

Since the distribution of realistic winds does not follow the uniform distribution and there 

are relatively few observations for high wind speeds, we use Monte Carlo simulation to generate 

a new dataset to oversampling the scatterometer data at higher wind speed as error-free 

observation, and add noise to match collocated ship winds. This approach accounts for the 

realistic distribution of the wind speeds, and has not ever done before. By binning the wind speed 

to fall within 0.5ms
-1

 range of the error-free wind speed dataset (Figure 12a, b and c), the 

comparison between these two new datasets shows that 1) the conditional sample mean of the 

three decks falls off slightly from the reference line near the higher wind speed boundary (around 

20ms
-1

); and 2) the results at lower wind speeds is consistent with the previous statistical artifact 
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test. This result supports a conclusion that the artifact bias has a small effect on the changes in 

wind speed distribution at higher wind speeds, and a significant impact on the lower wind speeds. 

It is notable that deck 792 and deck 992 are from two different data providers, with 

approximately 5% difference in their numbers, and their original data source are both from 

marine Global Telecommunication System (GTS). This similarity of source explains similarity in 

the comparison of satellite scatterometer winds to the collocated estimated ship winds for each 

two decks. 

                                                  (a) Deck 792     

 
(b) Deck 926                                                                                        (c) Deck 992  

 
 

Figure 10. Same as Figure 9. The black dots are associated with conditional sample mean of simulated 

noisy dataset within each 0.5ms
-1

 bin of the simulated error-free dataset. (a) Deck 792; (b) Deck 926; (c) 

Deck 992. 
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                                                                    (a) Deck 792     

 
(b) Deck 926                                                                                        (c) Deck 992  

 

Figure 11: Same as Figure 9. The black dots are associated with conditional sample mean of each 0.5ms
-1

 

bin of scatterometer winds generated by Monte Carlo approach. Red line is the cubic fitting line for those 

black dots (conditional sample mean). (a) Deck 792; (b) Deck 926; (c) Deck 992. 

 

A statistical significance test is conducted for each bin in order to account for statistical 

artifacts associated with the large random errors in the collocated estimated ship winds. In the 

present study, two-tailed t-test is used and α=0.01. We did not use z-test because the exact 

standard deviation of the estimated ship winds is not known. 

Table 2 details, for each bin, whether or not it is necessary to apply the bias correction by 

removing the artificial bias in the ship winds. ‘N/A’ means empty; this is because of the temporal 

and spatial mismatches within that range of wind speed in collocation. Where P-value is less than 

α (α = 0.01), it is necessary to apply the bias correction. The result of statistical significance 

testing rounding to three decimal place with deck 792 and deck 992 reveals that most of bins of 
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wind speed from these two decks are identified as artifact random error, meaning the bias 

correction does not need to be applied, and that visually-estimated winds are very well calibrated 

to satellite winds, albeit much noisier than satellite winds. This result is consistent with the 

results from the previous analysis that revealed the wind speed in decks 792 and 992 show a 

close match between the conditional sample mean and the medians of boxplot.  

Table 2. Statistical significance test for deck 792 and deck 992. Those P-values less than α are bolded. 

Wind speed 

range (ms
-1

) 
P-value 

Wind speed 

range (ms
-1

) 
P-value 

 Deck 792 Deck 992  Deck 792 Deck 992 

0.0-0.5 0.210 0.049 10.0-10.5 0.595 0.026 

0.5-1.0 0.993 0.896 10.5-11.0 0.112 0.136 

1.0-1.5 0.843 0.430 11.0-11.5 0.032 0.646 

1.5-2.0 0.268 0.070 11.5-12.0 0.451 0.667 

2.0-2.5 0.042      0.622 12.0-12.5 0.893 0.884 

2.5-3.0 <0.001 <0.001 12.5-13.0 0.764 0.275 

3.0-3.5 0.923 0.235 13.0-13.5 0.230 0.100 

3.5-4.0 0.321 <0.001 13.5-14.0 0.451 0.919 

4.0-4.5 0.592 0.674 14.0-14.5 0.583 0.702 

4.5-5.0 0.356 0.002 14.5-15.0 0.759 0.058 

5.0-5.5 0.019 0.007 15.0-15.5 0.389 0.059 

5.5-6.0 0.661 <0.001 15.5-16.0 0.197 0.152 

6.0-6.5 0.614 <0.001 16.0-16.5 0.235 0.203 

6.5-7.0 0.110 0.069 16.5-17.0 0.511 0.024 

7.0-7.5 0.002 0.028 17.0-17.5 0.935 N/A 

7.5-8.0 0.261 0.002 17.5-18.0 N/A 0.953 

8.0-8.5 0.160 0.039 18.0-18.5 0.640 0.895 

8.5-9.0 0.005 0.594 18.5-19.0 0.261 N/A 

9.0-9.5 0.012 <0.001    

9.5-10.0 0.527 0.021    

 

In order to address the bias for each bin of wind speed, we use the following formula: 

 bias = wship − errorartifact −wscat                                               (4.1) 

Where wship denotes the median of ship winds in each bin of satellite winds due to the larger 

effect of outlier on mean rather than median; errorartifact denotes the artifact difference; and w
scat

denotes the mean for each bin of satellite winds. By removing the artifact error from the 

collocated ship winds, the correction for real biases can be addressed by the difference between 

collocated ship winds with artifact biases removed and satellite winds within each 0.5ms
-1

 bin. 

This method of addressing bias correction is applied to decks 792 and 992, thus two sets of bias 

correction values are calculated, as shown in Table 3. Applying these two bias corrections for the 
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corresponding decks (792 and 992) is a straightforward process. The bias correction value is 

applied to the wind speed range, which can be confidently identified as a bias based on the 

statistical significance test.  

For other wind speeds, a new bias correction can be calculated through a weighted 

average of those two bias correction values by the number of observations for deck 792 and deck 

992. This new bias correction is limited up to 17ms
-1

. This is because, both for deck 792 and 

deck 992, no collocated matches are found within a 0.5ms
-1

 bin of wind speeds ranging from 

17ms
-1

 to 19ms
-1

. We use a cubic interpolator to calculate the corresponding bias correction 

value for each specific wind speed value. This new bias correction is referred to as the ‘LMS’ 

correction. 

Table 3. Bias correction for decks 792 and 992. 

Wind speed 

range (ms
-1

) 
Bias correction 

Wind speed 

range (ms
-1

) 
Bias correction 

 Deck 792 Deck 992  Deck 792 Deck 992 

0.0-0.5 -1.521 -1.415 10.0-10.5 -0.157 -0.630 

0.5-1.0 -0.003 0.083 10.5-11.0 -0.652 -0.609 

1.0-1.5 -0.157 -0.594 11.0-11.5 0.856 0.145 

1.5-2.0 -0.368 -0.558 11.5-12.0 0.374 0.241 

2.0-2.5 -0.632 -0.127 12.0-12.5 -0.099 -0.108 

2.5-3.0 1.004 0.484 12.5-13.0 0.257 0.533 

3.0-3.5 0.049 -0.283 13.0-13.5 1.538 0.004 

3.5-4.0 0.253 -1.194 13.5-14.0 -0.990 0.135 

4.0-4.5 0.240 -0.131 14.0-14.5 -0.517 -0.493 

4.5-5.0 -0.202 -0.555 14.5-15.0 0.419 1.167 

5.0-5.5 -0.567 -0.501 15.0-15.5 2.119 3.067 

5.5-6.0 -0.115 -0.998 15.5-16.0 3.173 -2.455 

6.0-6.5 0.107 -1.464 16.0-16.5 -2.594 -1.001 

6.5-7.0 -0.373 -0.352 16.5-17.0 -1.581 2.027 

7.0-7.5 -0.833 -0.476 17.0-17.5 0.113 N/A 

7.5-8.0 -0.303 -0.773 17.5-18.0 N/A 0.292 

8.0-8.5 -0.488 -0.459 18.0-18.5 -0.158 -0.250 

8.5-9.0 -0.777 -0.138 18.5-19.0 -8.632 N/A 

9.0-9.5 -0.759 -1.275    

9.5-10.0 -0.160 -0.613    

 

This new LMS bias correction is compared to Lindau’s (1995) correction. Table 4 

illustrates that at Beaufort force 1, which is associated with wind speeds of 0ms
-1

, Lindau (1995) 

suggests a bias correction of 0.0ms
-1

 whereas the LMS correction suggests -0.2ms
-1

 as the bias 

correction value. This value is consistent with the global average bias of 0.2ms
-1

 between 

equivalent neutral winds (larger; referring to satellite scatterometer winds) and actual winds 
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(referring to estimated ship winds). At Beaufort forces 1 and 4, the Lindau (1995) and LMS 

corrections have the same adjusted value (0.2ms
-1 

and 0.5ms
-1

 respectively). The LMS correction 

at Beaufort forces 2 and 3 is much greater than Lindau’s (1995) correction, and at a Beaufort 

force 5, the LMS correction is less than Lindau’s (1995) correction. Both the LMS and Lindau 

(1995) corrections indicate a negative bias correction value, although not identical. However, 

this new bias correction is only available for the wind speed range 0ms
-1

-17ms
-1

, which is limited 

to spatial and temporal matches in the collocation process.  

 

Table 4. The comparison between Lindau’s (1995) correction and LMS correction 

Beaufort 

Force 

Wind speed value in 

WMO 1100 scale (ms
-1

) 

Lindau’s (1995) correction 

value (ms
-1

) 
LMS correction value (ms

-1
)  

0 0.0 0.0 0.2 

1 1.0 -0.2 -0.2 

2 2.6 -0.1 -0.5 

3 4.6 -0.0 -0.6 

4 6.7 -0.5 -0.5 

5 9.3 -0.4 -0.1 

6 12.3 0.2 0.3 

7 15.4 0.8 0.3 

8 19.0 1.8 -- 

9 22.6 2.4 -- 

10 26.8 3.4 -- 

11 30.9 3.8 -- 

12 -- -- -- 
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CHAPTER 5 

 

CONCLUSION 
 

 

The purpose of this study was to improve the conversion of the Beaufort estimates scale 

to geophysical numeric wind speeds with scientific units (ms
-1

 in this case). While the initial plan 

was to use the Lindau’s (1995) correction, in analyzing the visually estimated ship winds in 

ICOADS it was found to be unsuitable. Thus ultimately, an entirely new bias correction was 

developed using intercalibration between satellite scatterometer winds and visually estimated 

ship winds.   

The author concluded that use of the Lindau (1995) correction would not be applicable 

when an initial analysis of the visually estimated ship winds in the ICOADS showed that most of 

the estimated ship winds for each major deck did not have the anticipated ‘13 value’ wind speed 

distribution. This is because observation practices vary by country and data provider (different 

deck numbers indicate different data collections provided to ICOADS, each which may contain 

one or more sources/countries). Because the wind speed indicator (WI)=5 is known to be 

Beaufort winds (converted based on WMO 1100 scale), it was not surprising that the deck 761 

dataset with WI=5 fell into the 13 discrete bins consistent with the Beaufort scale classifications 

(0 to 12).  However, the distribution of wind speeds with WI= 0, 2 (not shown in this study), 3 or 

6 for other major ICOADS decks revealed many more than the anticipated 13 bins.   

Therefore, assuming that the visually estimated ship winds and scatterometer winds have 

similar adjustments to 10m equivalent neutral winds, we calculated a new bias correction 

(referred to as the LMS correction) through a comparison between the QuickSCAT scatterometer 

winds and collocated visually estimated ship winds in ICOADS. This new calibration results in a 

revised bias correction for historical calibrations.  

It is notable that Lindau (1995) did extraordinary work through a rigorous derivation by 

considering the equal error variance in a two-way regression, but the Lindau (1995) scale relied 

on pressure gradients for comparison data, where these gradients had considerable uncertainty. 

This approach uses better comparison data, and applies more detailed analyses for very low and 

very high wind speeds. By applying the Freilich (1997) model to test the statistical artificial 

biases in the component of vector wind speeds at high/low boundaries, the author concluded that 
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the artificial biases have a significant effect on the lower wind speeds (0ms
-1

 to 5ms
-1

) and little 

impact on the higher wind speeds (14ms
-1

 to 20ms
-1

). These artificial biases are properly 

accounted for in the new LMS calibration, which is limited up to 17ms
-1

 of wind speed. Because 

of the intercalibration between satellite winds and collocated ship winds that met severe quality 

control requirements, very few temporal and spatial matches were found in the higher wind 

speed areas. Future work will investigate ways to further improve this bias correction and 

calculate the bias correction for wind speed greater than 17ms
-1

. In the meantime, the LMS-

adjusted estimated ship wind speed data will be provided in the ivad attm embedded into the next 

advanced version of ICOADS (ICOADS R3.0).  

The results of this study will have additional benefits in a variety of ways. For example, 

this study serves to validate satellite data, which is an important step in the development of new 

products and retrieval algorithms by the remote sensing community and satellite data 

assimilation groups. IVAD project aims to provide ‘best’ adjustment for marine observations (e.g. 

visually estimated ship winds), and by collaborating with the reanalysis community (e.g., the 

ERA-Interim Climatology and 20
th

 Century Reanalysis Group), ICOADS will be made aware of 

systematic errors, thereby allowing for additional improvements to the bias adjustment for 

marine observations (e.g. estimated ship winds). 

Finally, by making ICOADS more homogenous through the application of bias 

adjustments (e.g., Beaufort wind adjustments), it will be more useful to the wider scientific 

community. And the assurance of a more formal (and uniform) international repository, 

ICOADS/IVAD will encourage closer linkages between international research communities.  
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