Current Search: Research Repository (x) » * (x) » Citation (x) » Journal of Geophysical Research-Oceans (x) » Biochemistry (x) » Yoon, Hyesook (x) » Renner, Danielle (x)
Search results
- Title
- Activation Profiles of Human Kallikrein-Related Peptidases by Matrix Metalloproteinases.
- Creator
-
Yoon, Hyesook, Blaber, Sachiko, Li, Wu, Scarisbrick, Isobel, Blaber, Michael
- Abstract/Description
-
Abstract The 15 human kallikrein-related peptidases (KLKs) are clinically important biomarkers and therapeutic targets of interest in inflammation, cancer, and neurodegenerative disease. KLKs are secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their amino-terminal pro-peptide, and this is a key step in their functional regulation. Physiologically relevant KLK regulatory cascades of activation have been described in skin...
Show moreAbstract The 15 human kallikrein-related peptidases (KLKs) are clinically important biomarkers and therapeutic targets of interest in inflammation, cancer, and neurodegenerative disease. KLKs are secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their amino-terminal pro-peptide, and this is a key step in their functional regulation. Physiologically relevant KLK regulatory cascades of activation have been described in skin desquamation and semen liquefaction, and work by a large number of investigators has elucidated pairwise and autolytic activation relationships among the KLKs with the potential for more extensive activation cascades. More recent work has asked whether functional intersection of KLKs with other types of regulatory proteases exists. Such studies show a capacity for members of the thrombostasis axis to act as broad activators of pro-KLKs. In the present report, we ask whether such functional intersection is possible between the KLKs and the members of the matrix metalloproteinase (MMP) family by evaluating the ability of the MMPs to activate pro-KLKs. The results identify MMP-20 as a broad activator of pro-KLKs, suggesting the potential for intersection of the KLK and MMP axes under pathological dysregulation of MMP-20 expression.
Show less - Date Issued
- 2013
- Identifier
- FSU_migr_biomed_faculty_publications-0042, 10.1515/hsz-2012-0249, PMC3709557
- Format
- Citation
- Title
- Functional Intersection of the Kallikrein-Related Peptidases (KLKs) and Thrombostasis Axis.
- Creator
-
Blaber, Michael, Yoon, Hyesook, Juliano, Maria, Scarisbrick, Isobel, Blaber, Sachiko
- Abstract/Description
-
A large body of emerging evidence indicates a functional interaction between the kallikrein-related peptidases (KLKs) and proteases of the thrombostasis axis. These interactions appear relevant for both normal health as well as pathologies associated with inflammation, tissue injury, and remodeling. Regulatory interactions between the KLKs and thrombostasis proteases could impact several serious human diseases, including neurodegeneration and cancer. The emerging network of specific...
Show moreA large body of emerging evidence indicates a functional interaction between the kallikrein-related peptidases (KLKs) and proteases of the thrombostasis axis. These interactions appear relevant for both normal health as well as pathologies associated with inflammation, tissue injury, and remodeling. Regulatory interactions between the KLKs and thrombostasis proteases could impact several serious human diseases, including neurodegeneration and cancer. The emerging network of specific interactions between these two protease families appears to be complex, and much work remains to elucidate it. Complete understanding how this functional network resolves over time, given specific initial conditions, and how it might be controllably manipulated, will probably contribute to the emergence of novel diagnostics and therapeutic agents for major diseases.
Show less - Date Issued
- 2010
- Identifier
- FSU_migr_biomed_faculty_publications-0018, 10.1515/BC.2010.024, PMC3047482
- Format
- Citation
- Title
- A Completed KLK Activome Profile: Investigation of Activation Profiles of KLK9, 10, and 15..
- Creator
-
Yoon, Hyesook, Blaber, Sachiko, Debela, Mekdes, Goettig, Peter, Scarisbrick, Isobel, Blaber, Michael
- Abstract/Description
-
We previously reported the activation profiles of the human kallikrein-related peptidases (KLKs) as determined from a KLK pro-peptide fusion-protein system. That report described the activity profiles of 12 of the 15 mature KLKs versus the 15 different pro-KLK sequences. The missing profiles in the prior report, involving KLK9, 10, and 15, are now described. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, mass spectrometry, and N-terminal sequence analyses show that KLK9 and 10...
Show moreWe previously reported the activation profiles of the human kallikrein-related peptidases (KLKs) as determined from a KLK pro-peptide fusion-protein system. That report described the activity profiles of 12 of the 15 mature KLKs versus the 15 different pro-KLK sequences. The missing profiles in the prior report, involving KLK9, 10, and 15, are now described. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, mass spectrometry, and N-terminal sequence analyses show that KLK9 and 10 exhibit low hydrolytic activities towards all of the 15 pro-KLK sequences, while KLK15 exhibits significant activity towards both Arg- and Lys-containing KLK pro-sequences. The ability of KLK15 to activate pro-KLK8, 12, and 14 is confirmed using recombinant pro-KLK proteins, and shown to be significant for activation of pro-KLK8 and 14, but not 12. These additional data for KLK9, 10, and 15 now permit a completed KLK activome profile, using a KLK pro-peptide fusion-protein system, to be described. The results suggest that KLK15, once activated, can potentially feed back into additional pro-KLK activation pathways. Conversely, KLK9 and 10, once activated, are unlikely to participate in further pro-KLK activation pathways, although similar to KLK1 they may activate other bioactive peptides.
Show less - Date Issued
- 2009
- Identifier
- FSU_migr_biomed_faculty_publications-0012
- Format
- Citation
- Title
- Activation Profiles of Human Kallikrein-Related Peptidases by Proteases of the Thrombostasis Axis.
- Creator
-
Yoon, Hyesook, Blaber, Sachiko, Evans, D., Trim, Julie, Juliano, Maria, Scarisbrick, Isobel, Blaber, Michael
- Abstract/Description
-
The human kallikrein-related peptidases (KLKs) comprise 15 members (KLK1-15) and are the single largest family of serine proteases. The KLKs are utilized, or proposed, as clinically important biomarkers and therapeutic targets of interest in cancer and neurodegenerative disease. All KLKs appear to be secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their N-terminal pro-peptide. This processing is a key step in the regulation of...
Show moreThe human kallikrein-related peptidases (KLKs) comprise 15 members (KLK1-15) and are the single largest family of serine proteases. The KLKs are utilized, or proposed, as clinically important biomarkers and therapeutic targets of interest in cancer and neurodegenerative disease. All KLKs appear to be secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their N-terminal pro-peptide. This processing is a key step in the regulation of KLK function. Much recent work has been devoted to elucidating the potential for activation cascades between members of the KLK family, with physiologically relevant KLK regulatory cascades now described in skin desquamation and semen liquefaction. Despite this expanding knowledge of KLK regulation, details regarding the potential for functional intersection of KLKs with other regulatory proteases are essentially unknown. To elucidate such interaction potential, we have characterized the ability of proteases associated with thrombostasis to hydrolyze the pro-peptide sequences of the KLK family using a previously described pro-KLK fusion protein system. A subset of positive hydrolysis results were subsequently quantified with proteolytic assays using intact recombinant pro-KLK proteins. Pro-KLK6 and 14 can be activated by both plasmin and uPA, with plasmin being the best activator of pro-KLK6 identified to date. Pro-KLK11 and 12 can be activated by a broad-spectrum of thrombostasis proteases, with thrombin exhibiting a high degree of selectivity for pro-KLK12. The results show that proteases of the thrombostasis family can efficiently activate specific pro-KLKs, demonstrating the potential for important regulatory interactions between these two major protease families.
Show less - Date Issued
- 2008
- Identifier
- FSU_migr_biomed_faculty_publications-0009
- Format
- Citation
- Title
- The Autolytic Regulation of Human Kallikrein-Related Peptidase 6.
- Creator
-
Blaber, Sachiko, Yoon, Hyesook, Scarisbrick, Isobel, Juliano, Maria, Blaber, Michael
- Abstract/Description
-
Human kallikrein-related peptidase 6 (KLK6) is a member of the kallikrein family of serine-type proteases, characterized as an arginine-specific digestive-type protease capable of degrading a wide-variety of extracellular matrix proteins. KLK6 has been proposed to be a useful biomarker for breast and ovarian cancer prognosis, is abundantly expressed in the CNS and cerebrospinal fluid, and is intimately associated with regions of active inflammatory demyelination in multiple sclerosis (MS)...
Show moreHuman kallikrein-related peptidase 6 (KLK6) is a member of the kallikrein family of serine-type proteases, characterized as an arginine-specific digestive-type protease capable of degrading a wide-variety of extracellular matrix proteins. KLK6 has been proposed to be a useful biomarker for breast and ovarian cancer prognosis, is abundantly expressed in the CNS and cerebrospinal fluid, and is intimately associated with regions of active inflammatory demyelination in multiple sclerosis (MS) lesions. Inhibition of KLK6 results in delayed onset and reduced severity of symptoms associated with experimental autoimmune encephalomyelitis, suggesting a key effector role for this protease in CNS inflammatory disease. KLK6 has been shown to autolytically cleave internally, leading to inactivation and suggesting a negative feedback inhibition control mechanism. Alternatively, the ability of KLK6 to self-activate has also been reported, suggesting a positive feedback activation loop control mechanism. Activation of pro-KLK6 requires hydrolysis after a Lys residue; however, KLK6 exhibits 2 order of magnitude reduced affinity for hydrolysis after Lys versus Arg residues; therefore, the ability to autolytically activate has been called into question. In the present study the catalytic activity of KLK6 toward its pro-sequence and internal autolytic sequence is characterized. The results show that the ability of KLK6 to activate pro-KLK6 is essentially negligible when compared to the rate of the internal autolytic inactivation or to the ability of other proteases to activate pro-KLK6. The results thus show that the primary autolytic regulatory mechanism of KLK6 is negative feedback inhibition, and activation is likely achieved through the action of a separate protease.
Show less - Date Issued
- 2007
- Identifier
- FSU_migr_biomed_faculty_publications-0002, 10.1021/bi6025006, PMC2517904
- Format
- Citation