Current Search: Research Repository (x) » * (x) » Citation (x) » Mice (x)
Search results
Pages
- Title
- Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture.
- Creator
-
Darrow, Emily M, Huntley, Miriam H, Dudchenko, Olga, Stamenova, Elena K, Durand, Neva C, Sun, Zhuo, Huang, Su-Chen, Sanborn, Adrian L, Machol, Ido, Shamim, Muhammad, Seberg,...
Show moreDarrow, Emily M, Huntley, Miriam H, Dudchenko, Olga, Stamenova, Elena K, Durand, Neva C, Sun, Zhuo, Huang, Su-Chen, Sanborn, Adrian L, Machol, Ido, Shamim, Muhammad, Seberg, Andrew P, Lander, Eric S, Chadwick, Brian P, Aiden, Erez Lieberman
Show less - Abstract/Description
-
During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge...
Show moreDuring interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.
Show less - Date Issued
- 2016-08-02
- Identifier
- FSU_pmch_27432957, 10.1073/pnas.1609643113, PMC4978254, 27432957, 27432957, 1609643113
- Format
- Citation
- Title
- An insight into the thermodynamic characteristics of human thrombopoietin complexation with TN1 antibody.
- Creator
-
Arai, Shigeki, Shibazaki, Chie, Adachi, Motoyasu, Honjo, Eijiro, Tamada, Taro, Maeda, Yoshitake, Tahara, Tomoyuki, Kato, Takashi, Miyazaki, Hiroshi, Blaber, Michael, Kuroki, Ryota
- Abstract/Description
-
Human thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody-hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen-binding fragment (Fab) derived from the TN1 antibody (TN1-Fab). To clarify the mechanism by which hTPO is recognized by TN1-Fab the conformation of free TN1-Fab was determined to a resolution of 2.0 Å using X-ray...
Show moreHuman thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody-hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen-binding fragment (Fab) derived from the TN1 antibody (TN1-Fab). To clarify the mechanism by which hTPO is recognized by TN1-Fab the conformation of free TN1-Fab was determined to a resolution of 2.0 Å using X-ray crystallography and compared with the hTPO-bound form of TN1-Fab determined by a previous study. This structural comparison revealed that the conformation of TN1-Fab does not substantially change after hTPO binding and a set of 15 water molecules is released from the antigen-binding site (paratope) of TN1-Fab upon hTPO complexation. Interestingly, the heat capacity change (ΔCp) measured by ITC (-1.52 ± 0.05 kJ mol(-1) K(-1) ) differed significantly from calculations based upon the X-ray structure data of the hTPO-bound and unbound forms of TN1-Fab (-1.02 ∼ 0.25 kJ mol(-1) K(-1) ) suggesting that hTPO undergoes an induced-fit conformational change combined with significant desolvation upon TN1-Fab binding. The results shed light on the structural biology associated with neutralizing antibody recognition.
Show less - Date Issued
- 2016-10-01
- Identifier
- FSU_pmch_27419667, 10.1002/pro.2985, PMC5029525, 27419667, 27419667
- Format
- Citation
- Title
- 14-3-3 proteins are required for hippocampal long-term potentiation and associative learning and memory.
- Creator
-
Qiao, Haifa, Foote, Molly, Graham, Kourtney, Wu, Yuying, Zhou, Yi
- Abstract/Description
-
14-3-3 is a family of regulatory proteins highly expressed in the brain. Previous invertebrate studies have demonstrated the importance of 14-3-3 in the regulation of synaptic functions and learning and memory. However, the in vivo role of 14-3-3 in these processes has not been determined using mammalian animal models. Here, we report the behavioral and electrophysiological characterization of a new animal model of 14-3-3 proteins. These transgenic mice, considered to be a 14-3-3 functional...
Show more14-3-3 is a family of regulatory proteins highly expressed in the brain. Previous invertebrate studies have demonstrated the importance of 14-3-3 in the regulation of synaptic functions and learning and memory. However, the in vivo role of 14-3-3 in these processes has not been determined using mammalian animal models. Here, we report the behavioral and electrophysiological characterization of a new animal model of 14-3-3 proteins. These transgenic mice, considered to be a 14-3-3 functional knock-out, express a known 14-3-3 inhibitor in various brain regions of different founder lines. We identify a founder-specific impairment in hippocampal-dependent learning and memory tasks, as well as a correlated suppression in long-term synaptic plasticity of the hippocampal synapses. Moreover, hippocampal synaptic NMDA receptor levels are selectively reduced in the transgenic founder line that exhibits both behavioral and synaptic plasticity deficits. Collectively, our findings provide evidence that 14-3-3 is a positive regulator of associative learning and memory at both the behavioral and cellular level.
Show less - Date Issued
- 2014-04-02
- Identifier
- FSU_pmch_24695700, 10.1523/JNEUROSCI.4393-13.2014, PMC3972712, 24695700, 24695700, 34/14/4801
- Format
- Citation
- Title
- Acute BDNF treatment upregulates GluR1-SAP97 and GluR2-GRIP1 interactions: implications for sustained AMPA receptor expression..
- Creator
-
Jourdi, Hussam, Kabbaj, Mohamed
- Abstract/Description
-
Brain-derived neurotrophic factor (BDNF) plays several prominent roles in synaptic plasticity and in learning and memory formation. Reduced BDNF levels and altered BDNF signaling have been reported in several brain diseases and behavioral disorders, which also exhibit reduced levels of AMPAr subunits. BDNF treatment acutely regulates AMPA receptor expression and function, including synaptic AMPAr subunit trafficking, and implicates several well defined signaling molecules that are required to...
Show moreBrain-derived neurotrophic factor (BDNF) plays several prominent roles in synaptic plasticity and in learning and memory formation. Reduced BDNF levels and altered BDNF signaling have been reported in several brain diseases and behavioral disorders, which also exhibit reduced levels of AMPAr subunits. BDNF treatment acutely regulates AMPA receptor expression and function, including synaptic AMPAr subunit trafficking, and implicates several well defined signaling molecules that are required to elicit long term potentiation and depression (LTP and LTD, respectively). Long term encoding of synaptic events, as in long term memory formation, requires AMPAr stabilization and maintenance. However, factors regulating AMPAr stabilization in neuronal cell membranes and synaptic sites are not well characterized. In this study, we examine the effects of acute BDNF treatment on levels of AMPAr-associated scaffolding proteins and on AMPAr subunit-scaffolding protein interactions. We also examine the effects of BDNF-dependent enhanced interactions between AMPAr subunits with their specific scaffolding proteins on the accumulation of both types of proteins. Our results show that acute BDNF treatment upregulates the interactions between AMPAr subunits (GluR1 and GluR2) with their scaffold proteins SAP97 and GRIP1, respectively, leading to prolonged increased accumulation of both categories of proteins, albeit with distinct mechanisms for GluR1 and GluR2. Our findings reveal a new role for BDNF in the long term maintenance of AMPA receptor subunits and associated scaffolding proteins at synapses and further support the role of BDNF as a key regulator of synaptic consolidation. These results have potential implications for recent findings implicating BDNF and AMPAr subunits in various brain diseases and behavioral disorders.
Show less - Date Issued
- 2013-01-01
- Identifier
- FSU_pmch_23460828, 10.1371/journal.pone.0057124, PMC3584105, 23460828, 23460828, PONE-D-12-38051
- Format
- Citation
- Title
- Regulated large-scale nucleosome density patterns and precise nucleosome positioning correlate with V(D)J recombination.
- Creator
-
Pulivarthy, Sandhya R, Lion, Mattia, Kuzu, Guray, Matthews, Adam G W, Borowsky, Mark L, Morris, John, Kingston, Robert E, Dennis, Jonathan H, Tolstorukov, Michael Y, Oettinger,...
Show morePulivarthy, Sandhya R, Lion, Mattia, Kuzu, Guray, Matthews, Adam G W, Borowsky, Mark L, Morris, John, Kingston, Robert E, Dennis, Jonathan H, Tolstorukov, Michael Y, Oettinger, Marjorie A
Show less - Abstract/Description
-
We show that the physical distribution of nucleosomes at antigen receptor loci is subject to regulated cell type-specific and lineage-specific positioning and correlates with the accessibility of these gene segments to recombination. At the Ig heavy chain locus (IgH), a nucleosome in pro-B cells is generally positioned over each IgH variable (VH) coding segment, directly adjacent to the recombination signal sequence (RSS), placing the RSS in a position accessible to the recombination...
Show moreWe show that the physical distribution of nucleosomes at antigen receptor loci is subject to regulated cell type-specific and lineage-specific positioning and correlates with the accessibility of these gene segments to recombination. At the Ig heavy chain locus (IgH), a nucleosome in pro-B cells is generally positioned over each IgH variable (VH) coding segment, directly adjacent to the recombination signal sequence (RSS), placing the RSS in a position accessible to the recombination activating gene (RAG) recombinase. These changes result in establishment of a specific chromatin organization at the RSS that facilitates accessibility of the genomic DNA for the RAG recombinase. In contrast, in mouse embryonic fibroblasts the coding segment is depleted of nucleosomes, which instead cover the RSS, thereby rendering it inaccessible. Pro-T cells exhibit a pattern intermediate between pro-B cells and mouse embryonic fibroblasts. We also find large-scale variations of nucleosome density over hundreds of kilobases, delineating chromosomal domains within IgH, in a cell type-dependent manner. These findings suggest that developmentally regulated changes in nucleosome location and occupancy, in addition to the known chromatin modifications, play a fundamental role in regulating V(D)J recombination. Nucleosome positioning-which has previously been observed to vary locally at individual enhancers and promoters-may be a more general mechanism by which cells can regulate the accessibility of the genome during development, at scales ranging from several hundred base pairs to many kilobases.
Show less - Date Issued
- 2016-10-18
- Identifier
- FSU_pmch_27698124, 10.1073/pnas.1605543113, PMC5081657, 27698124, 27698124, 1605543113
- Format
- Citation
- Title
- An S116R Phosphorylation Site Mutation in Human Fibroblast Growth Factor-1 Differentially Affects Mitogenic and Glucose-Lowering Activities.
- Creator
-
Xia, Xue, Kumru, Ozan S, Blaber, Sachiko I, Middaugh, C Russell, Li, Ling, Ornitz, David M, Suh, Jae Myoung, Atkins, Annette R, Downes, Michael, Evans, Ronald M, Tenorio, Connie...
Show moreXia, Xue, Kumru, Ozan S, Blaber, Sachiko I, Middaugh, C Russell, Li, Ling, Ornitz, David M, Suh, Jae Myoung, Atkins, Annette R, Downes, Michael, Evans, Ronald M, Tenorio, Connie A, Bienkiewicz, Ewa, Blaber, Michael
Show less - Abstract/Description
-
Fibroblast growth factor-1 (FGF-1), a potent human mitogen and insulin sensitizer, signals through both tyrosine kinase receptor-mediated autocrine/paracrine pathways as well as a nuclear intracrine pathway. Phosphorylation of FGF-1 at serine 116 (S116) has been proposed to regulate intracrine signaling. Position S116 is located within a ∼17 amino acid C-terminal loop that contains a rich set of functional determinants including heparin∖heparan sulfate affinity, thiol reactivity, nuclear...
Show moreFibroblast growth factor-1 (FGF-1), a potent human mitogen and insulin sensitizer, signals through both tyrosine kinase receptor-mediated autocrine/paracrine pathways as well as a nuclear intracrine pathway. Phosphorylation of FGF-1 at serine 116 (S116) has been proposed to regulate intracrine signaling. Position S116 is located within a ∼17 amino acid C-terminal loop that contains a rich set of functional determinants including heparin∖heparan sulfate affinity, thiol reactivity, nuclear localization, pharmacokinetics, functional half-life, nuclear ligand affinity, stability, and structural dynamics. Mutational targeting of specific functionality in this region without perturbing other functional determinants is a design challenge. S116R is a non-phosphorylatable variant present in bovine FGF-1 and other members of the human FGF family. We show that the S116R mutation in human FGF-1 is accommodated with no perturbation of biophysical or structural properties, and is therefore an attractive mutation with which to elucidate the functional role of phosphorylation. Characterization of S116R shows reduction in NIH 3T3 fibroblast mitogenic stimulation, increase in fibroblast growth factor receptor-1c activation, and prolonged duration of glucose lowering in ob/ob hyperglycemic mice. A novel FGF-1/fibroblast growth factor receptor-1c dimerization interaction combined with non-phosphorylatable intracrine signaling is hypothesized to be responsible for these observed functional effects.
Show less - Date Issued
- 2016-12-01
- Identifier
- FSU_pmch_27773526, 10.1016/j.xphs.2016.09.005, PMC5310217, 27773526, 27773526, S0022-3549(16)41698-9
- Format
- Citation
- Title
- Female mice and rats exhibit species-specific metabolic and behavioral responses to ovariectomy.
- Creator
-
Witte, Michelina Messina, Resuehr, David, Chandler, Ashley R, Mehle, Ashlee K, Overton, J Michael
- Abstract/Description
-
Ovariectomy (OVX) leads to hyperphagia and weight gain in rats, which can be prevented by estradiol (E2) replacement; however, the role of endogenous E2 on feeding and energy homeostasis in female mice has not been well characterized. The primary goal of this study was to assess the relative contribution of increased energy intake and decreased energy expenditure to OVX-induced weight gain in female rats and mice. OVX led to hyperphagia in rats, but did not produce daily, nor cumulative,...
Show moreOvariectomy (OVX) leads to hyperphagia and weight gain in rats, which can be prevented by estradiol (E2) replacement; however, the role of endogenous E2 on feeding and energy homeostasis in female mice has not been well characterized. The primary goal of this study was to assess the relative contribution of increased energy intake and decreased energy expenditure to OVX-induced weight gain in female rats and mice. OVX led to hyperphagia in rats, but did not produce daily, nor cumulative, hyperphagia in mice. OVX decreased mass-specific metabolic rate in mice, but not in rats. OVX decreased home cage locomotor activity in both species. Pair-feeding attenuated OVX-induced weight gain in rats and produced both short- and long-term changes in expression of key hypothalamic genes involved in food intake and energy homeostasis, i.e., the anorexigenic neuropeptide pro-opiomelanocortin (POMC) and the orexigenic neuropeptides: melanin-concentrating hormone (MCH) and agouti-related peptide (AgRP). No differences in hypothalamic gene expression were observed between OVX'd and sham mice. The results suggest that OVX-induced weight gain is mediated by hyperphagia and reduced locomotor activity in rats, but that in mice, it is primarily mediated by reduced locomotor activity and metabolic rate.
Show less - Date Issued
- 2010-05-01
- Identifier
- FSU_pmch_20067798, 10.1016/j.ygcen.2010.01.006, PMC2856744, 20067798, 20067798, S0016-6480(10)00009-2
- Format
- Citation
- Title
- Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock.
- Creator
-
Lee, Hyeongmin, Chen, Rongmin, Lee, Yongjin, Yoo, Seunghee, Lee, Choogon
- Abstract/Description
-
Circadian rhythms in mammals are generated by a negative transcriptional feedback loop in which PERIOD (PER) is rate-limiting for feedback inhibition. Casein kinases Idelta and Iepsilon (CKIdelta/epsilon) can regulate temporal abundance/activity of PER by phosphorylation-mediated degradation and cellular localization. Despite their potentially crucial effects on PER, it has not been demonstrated in a mammalian system that these kinases play essential roles in circadian rhythm generation as...
Show moreCircadian rhythms in mammals are generated by a negative transcriptional feedback loop in which PERIOD (PER) is rate-limiting for feedback inhibition. Casein kinases Idelta and Iepsilon (CKIdelta/epsilon) can regulate temporal abundance/activity of PER by phosphorylation-mediated degradation and cellular localization. Despite their potentially crucial effects on PER, it has not been demonstrated in a mammalian system that these kinases play essential roles in circadian rhythm generation as does their homolog in Drosophila. To disrupt both CKIdelta/epsilon while avoiding the embryonic lethality of CKIdelta disruption in mice, we used CKIdelta-deficient Per2(Luc) mouse embryonic fibroblasts (MEFs) and overexpressed a dominant-negative mutant CKIepsilon (DN-CKIepsilon) in the mutant MEFs. CKIdelta-deficient MEFs exhibited a robust circadian rhythm, albeit with a longer period, suggesting that the cells possess a way to compensate for CKIdelta loss. When CKIepsilon activity was disrupted by the DN-CKIepsilon in the mutant MEFs, circadian bioluminescence rhythms were eliminated and rhythms in endogenous PER abundance and phosphorylation were severely compromised, demonstrating that CKIdelta/epsilon are indeed essential kinases for the clockwork. This is further supported by abolition of circadian rhythms when physical interaction between PER and CKIdelta/epsilon was disrupted by overexpressing the CKIdelta/epsilon binding domain of PER2 (CKBD-P2). Interestingly, CKBD-P2 overexpression led to dramatically low levels of endogenous PER, while PER-binding, kinase-inactive DN-CKIepsilon did not, suggesting that CKIdelta/epsilon may have a non-catalytic role in stabilizing PER. Our results show that an essential role of CKIdelta/epsilon is conserved between Drosophila and mammals, but CKIdelta/epsilon and DBT may have divergent non-catalytic functions in the clockwork as well.
Show less - Date Issued
- 2009-12-15
- Identifier
- FSU_pmch_19948962, 10.1073/pnas.0906651106, PMC2795500, 19948962, 19948962, 0906651106
- Format
- Citation
- Title
- An Examination of Dynamic Gene Expression Changes in the Mouse Brain During Pregnancy and the Postpartum Period.
- Creator
-
Ray, Surjyendu, Tzeng, Ruei-Ying, DiCarlo, Lisa M, Bundy, Joseph L, Vied, Cynthia, Tyson, Gary, Nowakowski, Richard, Arbeitman, Michelle N
- Abstract/Description
-
The developmental transition to motherhood requires gene expression changes that alter the brain to drive the female to perform maternal behaviors. We broadly examined the global transcriptional response in the mouse maternal brain, by examining four brain regions: hypothalamus, hippocampus, neocortex, and cerebellum, in virgin females, two pregnancy time points, and three postpartum time points. We find that overall there are hundreds of differentially expressed genes, but each brain region...
Show moreThe developmental transition to motherhood requires gene expression changes that alter the brain to drive the female to perform maternal behaviors. We broadly examined the global transcriptional response in the mouse maternal brain, by examining four brain regions: hypothalamus, hippocampus, neocortex, and cerebellum, in virgin females, two pregnancy time points, and three postpartum time points. We find that overall there are hundreds of differentially expressed genes, but each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions. Interestingly, a set of "early-response genes" is repressed in all brain regions during pregnancy and postpartum stages. Several genes previously implicated in underlying postpartum depression change expression. This study serves as an atlas of gene expression changes in the maternal brain, with the results demonstrating that pregnancy, parturition, and postpartum maternal experience substantially impact diverse brain regions.
Show less - Date Issued
- 2015-11-23
- Identifier
- FSU_pmch_26596646, 10.1534/g3.115.020982, PMC4704721, 26596646, 26596646, g3.115.020982
- Format
- Citation
- Title
- Light-regulated translational control of circadian behavior by eIF4E phosphorylation.
- Creator
-
Cao, Ruifeng, Gkogkas, Christos G, de Zavalia, Nuria, Blum, Ian D, Yanagiya, Akiko, Tsukumo, Yoshinori, Xu, Haiyan, Lee, Choogon, Storch, Kai-Florian, Liu, Andrew C, Amir,...
Show moreCao, Ruifeng, Gkogkas, Christos G, de Zavalia, Nuria, Blum, Ian D, Yanagiya, Akiko, Tsukumo, Yoshinori, Xu, Haiyan, Lee, Choogon, Storch, Kai-Florian, Liu, Andrew C, Amir, Shimon, Sonenberg, Nahum
Show less - Abstract/Description
-
The circadian (∼24 h) clock is continuously entrained (reset) by ambient light so that endogenous rhythms are synchronized with daily changes in the environment. Light-induced gene expression is thought to be the molecular mechanism underlying clock entrainment. mRNA translation is a key step of gene expression, but the manner in which clock entrainment is controlled at the level of mRNA translation is not well understood. We found that a light- and circadian clock-regulated MAPK/MNK pathway...
Show moreThe circadian (∼24 h) clock is continuously entrained (reset) by ambient light so that endogenous rhythms are synchronized with daily changes in the environment. Light-induced gene expression is thought to be the molecular mechanism underlying clock entrainment. mRNA translation is a key step of gene expression, but the manner in which clock entrainment is controlled at the level of mRNA translation is not well understood. We found that a light- and circadian clock-regulated MAPK/MNK pathway led to phosphorylation of the cap-binding protein eIF4E in the mouse suprachiasmatic nucleus of the hypothalamus, the locus of the master circadian clock in mammals. Phosphorylation of eIF4E specifically promoted translation of Period 1 (Per1) and Period 2 (Per2) mRNAs and increased the abundance of basal and inducible PER proteins, which facilitated circadian clock resetting and precise timekeeping. Together, these results highlight a critical role for light-regulated translational control in the physiology of the circadian clock.
Show less - Date Issued
- 2015-06-01
- Identifier
- FSU_pmch_25915475, 10.1038/nn.4010, PMC4446158, 25915475, 25915475, nn.4010
- Format
- Citation
- Title
- Long term ablation of protein kinase A (PKA)-mediated cardiac troponin I phosphorylation leads to excitation-contraction uncoupling and diastolic dysfunction in a knock-in mouse model of hypertrophic cardiomyopathy.
- Creator
-
Dweck, David, Sanchez-Gonzalez, Marcos A, Chang, Audrey N, Dulce, Raul A, Badger, Crystal-Dawn, Koutnik, Andrew P, Ruiz, Edda L, Griffin, Brittany, Liang, Jingsheng, Kabbaj,...
Show moreDweck, David, Sanchez-Gonzalez, Marcos A, Chang, Audrey N, Dulce, Raul A, Badger, Crystal-Dawn, Koutnik, Andrew P, Ruiz, Edda L, Griffin, Brittany, Liang, Jingsheng, Kabbaj, Mohamed, Fincham, Frank D, Hare, Joshua M, Overton, J Michael, Pinto, Jose R
Show less - Abstract/Description
-
The cardiac troponin I (cTnI) R21C (cTnI-R21C) mutation has been linked to hypertrophic cardiomyopathy and renders cTnI incapable of phosphorylation by PKA in vivo. Echocardiographic imaging of homozygous knock-in mice expressing the cTnI-R21C mutation shows that they develop hypertrophy after 12 months of age and have abnormal diastolic function that is characterized by longer filling times and impaired relaxation. Electrocardiographic analyses show that older R21C mice have elevated heart...
Show moreThe cardiac troponin I (cTnI) R21C (cTnI-R21C) mutation has been linked to hypertrophic cardiomyopathy and renders cTnI incapable of phosphorylation by PKA in vivo. Echocardiographic imaging of homozygous knock-in mice expressing the cTnI-R21C mutation shows that they develop hypertrophy after 12 months of age and have abnormal diastolic function that is characterized by longer filling times and impaired relaxation. Electrocardiographic analyses show that older R21C mice have elevated heart rates and reduced cardiovagal tone. Cardiac myocytes isolated from older R21C mice demonstrate that in the presence of isoproterenol, significant delays in Ca(2+) decay and sarcomere relaxation occur that are not present at 6 months of age. Although isoproterenol and stepwise increases in stimulation frequency accelerate Ca(2+)-transient and sarcomere shortening kinetics in R21C myocytes from older mice, they are unable to attain the corresponding WT values. When R21C myocytes from older mice are treated with isoproterenol, evidence of excitation-contraction uncoupling is indicated by an elevation in diastolic calcium that is frequency-dissociated and not coupled to shorter diastolic sarcomere lengths. Myocytes from older mice have smaller Ca(2+) transient amplitudes (2.3-fold) that are associated with reductions (2.9-fold) in sarcoplasmic reticulum Ca(2+) content. This abnormal Ca(2+) handling within the cell may be attributed to a reduction (2.4-fold) in calsequestrin expression in conjunction with an up-regulation (1.5-fold) of Na(+)-Ca(2+) exchanger. Incubation of permeabilized cardiac fibers from R21C mice with PKA confirmed that the mutation prevents facilitation of mechanical relaxation. Altogether, these results indicate that the inability to enhance myofilament relaxation through cTnI phosphorylation predisposes the heart to abnormal diastolic function, reduced accessibility of cardiac reserves, dysautonomia, and hypertrophy.
Show less - Date Issued
- 2014-08-15
- Identifier
- FSU_pmch_24973218, 10.1074/jbc.M114.561472, PMC4132808, 24973218, 24973218, M114.561472
- Format
- Citation
- Title
- Kallikrein cascades in traumatic spinal cord injury: in vitro evidence for roles in axonopathy and neuron degeneration..
- Creator
-
Radulovic, Maja, Yoon, Hyesook, Larson, Nadya, Wu, Jianmin, Linbo, Rachel, Burda, Joshua E, Diamandis, Eleftherios P, Blaber, Sachiko I, Blaber, Michael, Fehlings, Michael G,...
Show moreRadulovic, Maja, Yoon, Hyesook, Larson, Nadya, Wu, Jianmin, Linbo, Rachel, Burda, Joshua E, Diamandis, Eleftherios P, Blaber, Sachiko I, Blaber, Michael, Fehlings, Michael G, Scarisbrick, Isobel A
Show less - Abstract/Description
-
Kallikreins (KLKs) are a family of 15 secreted serine proteases with emerging roles in neurologic diseases. To illuminate their contributions to the pathophysiology of spinal cord injury (SCI), we evaluated acute through chronic changes in the immunohistochemical appearance of 6 KLKs (KLK1, KLK5, KLK6, KLK7, KLK8, and KLK9) in postmortem human traumatic SCI cases, quantified their RNA expression levels in experimental murine SCI, and assessed the impact of recombinant forms of each enzyme...
Show moreKallikreins (KLKs) are a family of 15 secreted serine proteases with emerging roles in neurologic diseases. To illuminate their contributions to the pathophysiology of spinal cord injury (SCI), we evaluated acute through chronic changes in the immunohistochemical appearance of 6 KLKs (KLK1, KLK5, KLK6, KLK7, KLK8, and KLK9) in postmortem human traumatic SCI cases, quantified their RNA expression levels in experimental murine SCI, and assessed the impact of recombinant forms of each enzyme toward murine cortical neurons in vitro. Temporally and spatially distinct changes in KLK expression were observed with partially overlapping patterns between human and murine SCI, including peak elevations (or reductions) during the acute and subacute periods. Kallikrein 9 showed the most marked changes and remained chronically elevated. Importantly, a subset of KLKs (KLK1, KLK5, KLK6, KLK7, and KLK9) were neurotoxic toward primary neurons in vitro. Kallikrein immunoreactivity was also observed in association with swollen axons and retraction bulbs in the human SCI cases examined. Together, these findings demonstrate that elevated levels of a significant subset of KLKs are positioned to contribute to neurodegenerative changes in cases of CNS trauma and disease and, therefore, represent new potential targets for the development of neuroprotective strategies.
Show less - Date Issued
- 2013-11-01
- Identifier
- FSU_pmch_24128681, 10.1097/NEN.0000000000000007, PMC4097185, 24128681, 24128681
- Format
- Citation
- Title
- Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells.
- Creator
-
Subathra, Marimuthu, Korrapati, Midhun, Howell, Lauren A, Arthur, John M, Shayman, James A, Schnellmann, Rick G, Siskind, Leah J
- Abstract/Description
-
Glycosphingolipids (GSLs) play a role in insulin resistance and diabetes, but their role in diabetic nephropathy (DN) has received limited attention. We used 9- and 17-wk-old nondiabetic db/m and diabetic db/db mice to examine the role of GSLs in DN. Cerebrosides or monoglycosylated GSLs [hexosylceramides (HexCers); glucosyl- and galactosylceramides] and lactosylceramide (LacCers) were elevated in db/db mouse kidney cortices, specifically in glomeruli, and also in urine. In our recent paper ...
Show moreGlycosphingolipids (GSLs) play a role in insulin resistance and diabetes, but their role in diabetic nephropathy (DN) has received limited attention. We used 9- and 17-wk-old nondiabetic db/m and diabetic db/db mice to examine the role of GSLs in DN. Cerebrosides or monoglycosylated GSLs [hexosylceramides (HexCers); glucosyl- and galactosylceramides] and lactosylceramide (LacCers) were elevated in db/db mouse kidney cortices, specifically in glomeruli, and also in urine. In our recent paper (25), we observed that the kidneys exhibited glomerular hypertrophy and proximal tubular vacuolization and increased fibrosis markers at these time points. Mesangial cells contribute to hyperglycemia-induced glomerular hypertrophy in DN. Hyperglycemic culture conditions, similar to that present in diabetes, were sufficient to elevate mesangial cell HexCers and increase markers of fibrosis, extracellular matrix proteins, and cellular hypertrophy. Inhibition of glucosylceramide synthase or lowering glucose levels decreased markers of fibrosis and extracellular matrix proteins and reversed mesangial cell hypertrophy. Hyperglycemia increased phosphorylated (p)SMAD3 and pAkt levels and reduced phosphatase and tensin homolog levels, which were reversed with glucosylceramide synthase inhibition. These data suggest that inhibition of glucosylceramide synthase reversed mesangial cell hypertrophy through decreased pAkt and pSmad3 and increased pathways responsible for protein degradation. Importantly, urinary GSL levels were higher in patients with DN compared with healthy control subjects, implicating a role for these lipids in human DN. Thus, hyperglycemia in type II diabetes leads to renal dysfunction at least in part by inducing accumulation of HexCers and LacCers in mesangial cells, resulting in fibrosis, extracellular matrix production, and hypertrophy.
Show less - Date Issued
- 2015-08-01
- Identifier
- FSU_pmch_26041445, 10.1152/ajprenal.00150.2015, PMC4525094, 26041445, 26041445, ajprenal.00150.2015
- Format
- Citation
- Title
- In Vivo Analysis of Troponin C Knock-In (A8V) Mice: Evidence that TNNC1 Is a Hypertrophic Cardiomyopathy Susceptibility Gene..
- Creator
-
Martins, Adriano S, Parvatiyar, Michelle S, Feng, Han-Zhong, Bos, J Martijn, Gonzalez-Martinez, David, Vukmirovic, Milica, Turna, Rajdeep S, Sanchez-Gonzalez, Marcos A, Badger,...
Show moreMartins, Adriano S, Parvatiyar, Michelle S, Feng, Han-Zhong, Bos, J Martijn, Gonzalez-Martinez, David, Vukmirovic, Milica, Turna, Rajdeep S, Sanchez-Gonzalez, Marcos A, Badger, Crystal-Dawn, Zorio, Diego A R, Singh, Rakesh K, Wang, Yingcai, Jin, J-P, Ackerman, Michael J, Pinto, Jose R
Show less - Abstract/Description
-
Mutations in thin-filament proteins have been linked to hypertrophic cardiomyopathy, but it has never been demonstrated that variants identified in the TNNC1 (gene encoding troponin C) can evoke cardiac remodeling in vivo. The goal of this study was to determine whether TNNC1 can be categorized as an hypertrophic cardiomyopathy susceptibility gene, such that a mouse model can recapitulate the clinical presentation of the proband. The TNNC1-A8V proband diagnosed with severe obstructive...
Show moreMutations in thin-filament proteins have been linked to hypertrophic cardiomyopathy, but it has never been demonstrated that variants identified in the TNNC1 (gene encoding troponin C) can evoke cardiac remodeling in vivo. The goal of this study was to determine whether TNNC1 can be categorized as an hypertrophic cardiomyopathy susceptibility gene, such that a mouse model can recapitulate the clinical presentation of the proband. The TNNC1-A8V proband diagnosed with severe obstructive hypertrophic cardiomyopathy at 34 years of age exhibited mild-to-moderate thickening in left and right ventricular walls, decreased left ventricular dimensions, left atrial enlargement, and hyperdynamic left ventricular systolic function. Genetically engineered knock-in (KI) mice containing the A8V mutation (heterozygote=KI-TnC-A8V(+/-); homozygote=KI-TnC-A8V(+/+)) were characterized by echocardiography and pressure-volume studies. Three-month-old KI-TnC-A8V(+/+) mice displayed decreased ventricular dimensions, mild diastolic dysfunction, and enhanced systolic function, whereas KI-TnC-A8V(+/-) mice displayed cardiac restriction at 14 months of age. KI hearts exhibited atrial enlargement, papillary muscle hypertrophy, and fibrosis. Liquid chromatography-mass spectroscopy was used to determine incorporation of mutant cardiac troponin C (≈ 21%) into the KI-TnC-A8V(+/-) cardiac myofilament. Reduced diastolic sarcomeric length, increased shortening, and prolonged Ca(2+) and contractile transients were recorded in intact KI-TnC-A8V(+/-) and KI-TnC-A8V(+/+) cardiomyocytes. Ca(2+) sensitivity of contraction in skinned fibers increased with mutant gene dose: KI-TnC-A8V(+/+)>KI-TnC-A8V(+/-)>wild-type, whereas KI-TnC-A8V(+/+) relaxed more slowly on flash photolysis of diazo-2. The TNNC1-A8V mutant increases the Ca(2+)-binding affinity of the thin filament and elicits changes in Ca(2+) homeostasis and cellular remodeling, which leads to diastolic dysfunction. These in vivo alterations further implicate the role of TNNC1 mutations in the development of cardiomyopathy.
Show less - Date Issued
- 2015-10-01
- Identifier
- FSU_pmch_26304555, 10.1161/CIRCGENETICS.114.000957, PMC4618104, 26304555, 26304555
- Format
- Citation
- Title
- Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice.
- Creator
-
Foote, Molly, Qiao, Haifa, Graham, Kourtney, Wu, Yuying, Zhou, Yi
- Abstract/Description
-
The 14-3-3 family of proteins is implicated in the regulation of several key neuronal processes. Previous human and animal studies suggested an association between 14-3-3 dysregulation and schizophrenia. We characterized behavioral and functional changes in transgenic mice that express an isoform-independent 14-3-3 inhibitor peptide in the brain. We recently showed that 14-3-3 functional knockout mice (FKO) exhibit impairments in associative learning and memory. We report here that these 14-3...
Show moreThe 14-3-3 family of proteins is implicated in the regulation of several key neuronal processes. Previous human and animal studies suggested an association between 14-3-3 dysregulation and schizophrenia. We characterized behavioral and functional changes in transgenic mice that express an isoform-independent 14-3-3 inhibitor peptide in the brain. We recently showed that 14-3-3 functional knockout mice (FKO) exhibit impairments in associative learning and memory. We report here that these 14-3-3 FKO mice display other behavioral deficits that correspond to the core symptoms of schizophrenia. These behavioral deficits may be attributed to alterations in multiple neurotransmission systems in the 14-3-3 FKO mice. In particular, inhibition of 14-3-3 proteins results in a reduction of dendritic complexity and spine density in forebrain excitatory neurons, which may underlie the altered synaptic connectivity in the prefrontal cortical synapse of the 14-3-3 FKO mice. At the molecular level, this dendritic spine defect may stem from dysregulated actin dynamics secondary to a disruption of the 14-3-3-dependent regulation of phosphorylated cofilin. Collectively, our data provide a link between 14-3-3 dysfunction, synaptic alterations, and schizophrenia-associated behavioral deficits.
Show less - Date Issued
- 2015-09-15
- Identifier
- FSU_pmch_25863357, 10.1016/j.biopsych.2015.02.015, PMC4544659, 25863357, 25863357, S0006-3223(15)00125-0
- Format
- Citation
- Title
- Melatonin in the mammalian olfactory bulb.
- Creator
-
Corthell, J T, Olcese, J, Trombley, P Q
- Abstract/Description
-
Melatonin is a neurohormone associated with circadian rhythms. A diurnal rhythm in olfactory sensitivity has been previously reported and melatonin receptor mRNAs have been observed in the olfactory bulb, but the effects of melatonin in the olfactory bulb have not been explored. First, we corroborated data from a previous study that identified melatonin receptor messenger RNAs in the olfactory bulb. We then investigated whether melatonin treatment would affect cells in the olfactory bulbs of...
Show moreMelatonin is a neurohormone associated with circadian rhythms. A diurnal rhythm in olfactory sensitivity has been previously reported and melatonin receptor mRNAs have been observed in the olfactory bulb, but the effects of melatonin in the olfactory bulb have not been explored. First, we corroborated data from a previous study that identified melatonin receptor messenger RNAs in the olfactory bulb. We then investigated whether melatonin treatment would affect cells in the olfactory bulbs of rats. Using a combination of polymerase chain reaction (PCR), quantitative PCR (qPCR), cell culture, and electrophysiology, we discovered that melatonin receptors and melatonin synthesis enzymes were present in the olfactory bulb and we observed changes in connexin43 protein, GluR1 mRNA, GluR2 mRNA, Per1 mRNA, Cry2 mRNA, and K(+) currents in response to 2-iodomelatonin. Via qPCR, we observed that messenger RNAs encoding melatonin receptors and melatonin biosynthesis enzymes fluctuated in the olfactory bulb across 24h. Together, these data show that melatonin receptors are present in the olfactory bulb and likely affect olfactory function. Additionally, these data suggest that melatonin may be locally synthesized in the olfactory bulb.
Show less - Date Issued
- 2014-03-07
- Identifier
- FSU_pmch_24365461, 10.1016/j.neuroscience.2013.12.033, PMC3939688, 24365461, 24365461, S0306-4522(13)01056-7
- Format
- Citation
- Title
- Neurogenesis and neuronal migration in the forebrain of the TorsinA knockout mouse embryo.
- Creator
-
McCarthy, Deirdre M, Gioioso, Valeria, Zhang, Xuan, Sharma, Nutan, Bhide, Pradeep G
- Abstract/Description
-
Early-onset generalized torsion dystonia, also known as DYT1 dystonia, is a childhood onset heritable neurological movement disorder involving painful, involuntary muscle contractions, sustained abnormal postures, and repetitive movements. It is caused by a GAG deletion in the Tor1A gene located on chromosome 9. TorsinA, the product of the Tor1A gene, is expressed throughout the brain beginning early in embryonic development. It plays a role in the regulation of nuclear envelope-cytoskeletal...
Show moreEarly-onset generalized torsion dystonia, also known as DYT1 dystonia, is a childhood onset heritable neurological movement disorder involving painful, involuntary muscle contractions, sustained abnormal postures, and repetitive movements. It is caused by a GAG deletion in the Tor1A gene located on chromosome 9. TorsinA, the product of the Tor1A gene, is expressed throughout the brain beginning early in embryonic development. It plays a role in the regulation of nuclear envelope-cytoskeletal interactions, and presumably nuclear translocation. Since nuclear translocation, powered by cytoskeletal traction, is critical for cell proliferation and migration, we examined whether neurogenesis and neuronal migration are affected in Tor1A-/- mouse brain. Our data show that interkinetic nuclear migration and the pattern of migration of newly generated neurons are impaired in the dorsal forebrain of the Tor1A-/- embryo. However, neurogenesis is not altered significantly. The rate of migration of cells from explants of the medial ganglionic eminence is also impaired in the Tor1A-/- embryo. Thus, loss of torsinA results in subtle but significant alterations in cell proliferation and migration in the embryonic forebrain. These subtle developmental changes are consistent with a lack of significant changes in neuronal numbers, neuronal positioning or size of brain regions in DYT1 dystonia patients.
Show less - Date Issued
- 2012-01-01
- Identifier
- FSU_pmch_23018676, 10.1159/000342260, PMC3712350, 23018676, 23018676, 000342260
- Format
- Citation
- Title
- New methods for investigation of neuronal migration in embryonic brain explants.
- Creator
-
Nery, Flávia C, da Hora, Cintia C, Yaqub, Uzma, Zhang, Xuan, McCarthy, Deirdre M, Bhide, Pradeep G, Irimia, Daniel, Breakefield, Xandra O
- Abstract/Description
-
Proper migration of neurons is essential for the formation and normal functioning of the nervous system. Defects in neuronal migration underlie a number of neurologic diseases in humans. Although cell migration is crucial for neural development, molecular mechanisms guiding neuronal migration remain to be elucidated fully. Newborn neurons from the embryonic medial ganglionic eminence (MGE) migrate a long distance dorsally in the developing brain, giving rise to several types of interneurons...
Show moreProper migration of neurons is essential for the formation and normal functioning of the nervous system. Defects in neuronal migration underlie a number of neurologic diseases in humans. Although cell migration is crucial for neural development, molecular mechanisms guiding neuronal migration remain to be elucidated fully. Newborn neurons from the embryonic medial ganglionic eminence (MGE) migrate a long distance dorsally in the developing brain, giving rise to several types of interneurons in the neocortex. In this study, we developed an immunocytochemistry (ICC) protocol to stain neurons migrating out of the MGE explant embedded in Matrigel. We also established a protocol to efficiently transfect cells in MGE explants, achieving a transduction efficiency of more than 30%. In addition, we developed microfluidic chambers for explants that allow visualization of the vectorial migration of individual neurons from mouse embryonic MGE explants. Our microfluidic system allows monitoring of the distribution of cellular organelles (e.g. Golgi) within migrating neurons which have been stained with commercial molecular dyes or transfected with adeno-associated virus (AAV) expressing reporter proteins. These methods provide new paradigms to study neuronal migration in real-time.
Show less - Date Issued
- 2015-01-15
- Identifier
- FSU_pmch_25291524, 10.1016/j.jneumeth.2014.09.028, PMC4268085, 25291524, 25291524, S0165-0270(14)00353-7
- Format
- Citation
- Title
- Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury.
- Creator
-
Cheng, Zhijian, Zhu, Wen, Cao, Kai, Wu, Fei, Li, Jin, Wang, Guoyu, Li, Haopen, Lu, Ming, Ren, Yi, He, Xijing
- Abstract/Description
-
Neural stem cell (NSC) transplantation has been proposed to promote functional recovery after spinal cord injury. However, a detailed understanding of the mechanisms of how NSCs exert their therapeutic plasticity is lacking. We transplanted mouse NSCs into the injured spinal cord seven days after SCI, and the Basso Mouse Scale (BMS) score was performed to assess locomotor function. The anti-inflammatory effects of NSC transplantation was analyzed by immunofluorescence staining of neutrophil...
Show moreNeural stem cell (NSC) transplantation has been proposed to promote functional recovery after spinal cord injury. However, a detailed understanding of the mechanisms of how NSCs exert their therapeutic plasticity is lacking. We transplanted mouse NSCs into the injured spinal cord seven days after SCI, and the Basso Mouse Scale (BMS) score was performed to assess locomotor function. The anti-inflammatory effects of NSC transplantation was analyzed by immunofluorescence staining of neutrophil and macrophages and the detection of mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukin-12 (IL-12). Furthermore, bone marrow-derived macrophages (BMDMs) were co-cultured with NSCs and followed by analyzing the mRNA levels of inducible nitric oxide synthase (iNOS), TNF-α, IL-1β, IL-6 and IL-10 with quantitative real-time PCR. The production of TNF-α and IL-1β by BMDMs was examined using the enzyme-linked immunosorbent assay (ELISA). Transplanted NSCs had significantly increased BMS scores (p < 0.05). Histological results showed that the grafted NSCs migrated from the injection site toward the injured area. NSCs transplantation significantly reduced the number of neutrophils and iNOS+/Mac-2+ cells at the epicenter of the injured area (p < 0.05). Meanwhile, mRNA levels of TNF-α, IL-1β, IL-6 and IL-12 in the NSCs transplantation group were significantly decreased compared to the control group. Furthermore, NSCs inhibited the iNOS expression of BMDMs and the release of inflammatory factors by macrophages in vitro (p < 0.05). These results suggest that NSC transplantation could modulate SCI-induced inflammatory responses and enhance neurological function after SCI via reducing M1 macrophage activation and infiltrating neutrophils. Thus, this study provides a new insight into the mechanisms responsible for the anti-inflammatory effect of NSC transplantation after SCI.
Show less - Date Issued
- 2016-08-23
- Identifier
- FSU_pmch_27563878, 10.3390/ijms17091380, PMC5037660, 27563878, 27563878, ijms17091380
- Format
- Citation
- Title
- Cdk5rap2 exposes the centrosomal root of microcephaly syndromes.
- Creator
-
Megraw, Timothy L, Sharkey, James T, Nowakowski, Richard S
- Abstract/Description
-
Autosomal recessive primary microcephaly (MCPH) is characterized by small brain size as a result of deficient neuron production in the developing cerebral cortex. Although MCPH is a rare disease, the questions surrounding its etiology strike at the core of stem cell biology. The seven genes implicated in MCPH all encode centrosomal proteins and disruption of the MCPH gene Cdk5rap2 in mice revealed its role in neural progenitor proliferation and in maintaining normal centriole replication...
Show moreAutosomal recessive primary microcephaly (MCPH) is characterized by small brain size as a result of deficient neuron production in the developing cerebral cortex. Although MCPH is a rare disease, the questions surrounding its etiology strike at the core of stem cell biology. The seven genes implicated in MCPH all encode centrosomal proteins and disruption of the MCPH gene Cdk5rap2 in mice revealed its role in neural progenitor proliferation and in maintaining normal centriole replication control. We discuss here the impact that centrosome regulation has upon neural progenitors in the developing brain. We integrate the impact of centriole replication defects with the functions of Cdk5rap2 and other MCPH proteins, propose mechanisms for progenitor loss in MCPH, and discuss links to two other microcephaly syndromes.
Show less - Date Issued
- 2011-08-01
- Identifier
- FSU_pmch_21632253, 10.1016/j.tcb.2011.04.007, PMC3371655, 21632253, 21632253, S0962-8924(11)00083-3
- Format
- Citation
- Title
- Nonmuscle myosin-dependent synthesis of type I collagen.
- Creator
-
Cai, Le, Fritz, Dillon, Stefanovic, Lela, Stefanovic, Branko
- Abstract/Description
-
Type I collagen, synthesized in all tissues as the heterotrimer of two alpha1(I) polypeptides and one alpha2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5' stem-loop in collagen alpha1(I) and alpha2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with...
Show moreType I collagen, synthesized in all tissues as the heterotrimer of two alpha1(I) polypeptides and one alpha2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5' stem-loop in collagen alpha1(I) and alpha2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle myosin filaments results in secretion of collagen alpha1(I) homotrimer, diminished intracellular colocalization of collagen alpha1(I) and alpha2(I) polypeptides (required for folding of the heterotrimer), and their increased intracellular degradation. Inhibition of the motor function of myosin has similar collagen-specific effects, while disruption of actin filaments has a general effect on protein secretion. Nonmuscle myosin copurifies with polysomes, and there is a subset of polysomes involved in myosin-dependent translation of collagen mRNAs. These results indicate that association of collagen mRNAs with nonmuscle myosin filaments is necessary to coordinately synthesize collagen alpha1(I) and alpha2(I) polypeptides. We postulate that LARP6/myosin-dependent mechanism regulates the synthesis of heterotrimeric type I collagen by coordinating the translation of collagen mRNAs.
Show less - Date Issued
- 2010-08-27
- Identifier
- FSU_pmch_20603131, 10.1016/j.jmb.2010.06.057, PMC3674529, 20603131, 20603131, S0022-2836(10)00700-X
- Format
- Citation
- Title
- Differential serotonergic modulation across the main and accessory olfactory bulbs.
- Creator
-
Huang, Zhenbo, Thiebaud, Nicolas, Fadool, Debra Ann
- Abstract/Description
-
There are serotonergic projections to both the main (MOB) and the accessory olfactory bulb (AOB). Current-clamp experiments demonstrate that serotonergic afferents are largely excitatory for mitral cells (MCs) in the MOB where 5-HT receptors mediate a direct excitatory action. Serotonergic afferents are predominately inhibitory for MCs in the AOB. There are two types of inhibition: indirect inhibition mediated through the 5-HT receptors on GABAergic interneurons and direct inhibition via the...
Show moreThere are serotonergic projections to both the main (MOB) and the accessory olfactory bulb (AOB). Current-clamp experiments demonstrate that serotonergic afferents are largely excitatory for mitral cells (MCs) in the MOB where 5-HT receptors mediate a direct excitatory action. Serotonergic afferents are predominately inhibitory for MCs in the AOB. There are two types of inhibition: indirect inhibition mediated through the 5-HT receptors on GABAergic interneurons and direct inhibition via the 5-HT receptors on MCs. Differential 5-HT neuromodulation of MCs across the MOB and AOB could contribute to select behaviours such as olfactory learning or aggression. Mitral cells (MCs) contained in the main (MOB) and accessory (AOB) olfactory bulb have distinct intrinsic membrane properties but the extent of neuromodulation across the two systems has not been widely explored. Herein, we investigated a widely distributed CNS modulator, serotonin (5-HT), for its ability to modulate the biophysical properties of MCs across the MOB and AOB, using an in vitro, brain slice approach in postnatal 15-30 day mice. In the MOB, 5-HT elicited three types of responses in 93% of 180 cells tested. Cells were either directly excited (70%), inhibited (10%) or showed a mixed response (13%)- first inhibition followed by excitation. In the AOB, 82% of 148 cells were inhibited with 18% of cells showing no response. Albeit located in parallel partitions of the olfactory system, 5-HT largely elicited MC excitation in the MOB while it evoked two different kinetic rates of MC inhibition in the AOB. Using a combination of pharmacological agents, we found that the MC excitatory responses in the MOB were mediated by 5-HT receptors through a direct activation. In comparison, 5-HT-evoked inhibitory responses in the AOB arose due to a polysynaptic, slow-onset inhibition attributed to 5-HT receptor activation exciting GABAergic interneurons. The second type of inhibition had a rapid onset as a result of direct inhibition mediated by the 5-HT class of receptors. The distinct serotonergic modulation of MCs between the MOB and AOB could provide a molecular basis for differential chemosensory behaviours driven by the brainstem raphe nuclei into these parallel systems.
Show less - Date Issued
- 2017-06-01
- Identifier
- FSU_pmch_28229459, 10.1113/JP273945, PMC5451723, 28229459, 28229459
- Format
- Citation
- Title
- Awake, long-term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice.
- Creator
-
Bell, Genevieve A, Fadool, Debra Ann
- Abstract/Description
-
Intranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the...
Show moreIntranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the brain. Previous research from our laboratory has demonstrated that acute insulin intranasal delivery (IND) enhanced both short- and long-term memory as well as increased two-odor discrimination in a two-choice paradigm. Herein, we investigated the behavioral and physiological effects of chronic insulin IND. Adult, male C57BL6/J mice were intranasally treated with 5μg/μl of insulin twice daily for 30 and 60days. Metabolic assessment indicated no change in body weight, caloric intake, or energy expenditure following chronic insulin IND, but an increase in the frequency of meal bouts selectively in the dark cycle. Unlike acute insulin IND, which has been shown to cause enhanced performance in odor habituation/dishabituation and two-odor discrimination tasks in mice, chronic insulin IND did not enhance olfactometry-based odorant discrimination or olfactory reversal learning. In an object memory recognition task, insulin IND-treated mice did not perform differently than controls, regardless of task duration. Biochemical analyses of the olfactory bulb revealed a modest 1.3 fold increase in IR kinase phosphorylation but no significant increase in Kv1.3 phosphorylation. Substrate phosphorylation of IR kinase downstream effectors (MAPK/ERK and Akt signaling) proved to be highly variable. These data indicate that chronic administration of insulin IND in mice fails to enhance olfactory ability, object memory recognition, or a majority of systems physiology metabolic factors - as reported to elicit a modulatory effect with acute administration. This leads to two alternative interpretations regarding long-term insulin IND in mice: 1) It causes an initial stage of insulin resistance to dampen the behaviors that would normally be modulated under acute insulin IND, but ability to clear a glucose challenge is still retained, or 2) There is a lack of behavioral modulation at high concentration of insulin attributed to the twice daily intervals of hyperinsulinemia caused by insulin IND administration without any insulin resistance, per se.
Show less - Date Issued
- 2017-05-15
- Identifier
- FSU_pmch_28259806, 10.1016/j.physbeh.2017.02.044, PMC5639911, 28259806, 28259806, S0031-9384(16)30820-4
- Format
- Citation
- Title
- Upregulation of minichromosome maintenance complex component 3 during epithelial-to-mesenchymal transition in human prostate cancer.
- Creator
-
Stewart, Paul A, Khamis, Zahraa I, Zhau, Haiyen E, Duan, Peng, Li, Quanlin, Chung, Leland W K, Sang, Qing-Xiang Amy
- Abstract/Description
-
Metastasis is often associated with epithelial-to-mesenchymal transition (EMT). To understand the molecular mechanisms of this process, we conducted proteomic analysis of androgen-repressed cancer of the prostate (ARCaP), an experimental model of metastatic human prostate cancer. The protein signatures of epithelial (ARCaPE) and mesenchymal (ARCaPM) cells were consistent with their phenotypes. Importantly, the expression of mini-chromosome maintenance 3 (MCM3) protein, a crucial subunit of...
Show moreMetastasis is often associated with epithelial-to-mesenchymal transition (EMT). To understand the molecular mechanisms of this process, we conducted proteomic analysis of androgen-repressed cancer of the prostate (ARCaP), an experimental model of metastatic human prostate cancer. The protein signatures of epithelial (ARCaPE) and mesenchymal (ARCaPM) cells were consistent with their phenotypes. Importantly, the expression of mini-chromosome maintenance 3 (MCM3) protein, a crucial subunit of DNA helicase, was significantly higher in ARCaPM cells than that of ARCaPE cells. This increased MCM3 protein expression level was verified using Western blot analysis of the ARCaP cell lineages. Furthermore, immunohistochemical analysis of MCM3 protein levels in human prostate tissue specimens showed elevated expression in bone metastasis and advanced human prostate cancer tissue samples. Subcutaneous injection experiments using ARCaPE and ARCaPM cells in a mouse model also revealed increased MCM3 protein levels in mesenchymal-derived tumors. This study identifies MCM3 as an upregulated molecule in mesenchymal phenotype of human prostate cancer cells and advanced human prostate cancer specimens, suggesting MCM3 may be a new potential drug target for prostate cancer treatment.
Show less - Date Issued
- 2017-06-13
- Identifier
- FSU_pmch_28424404, 10.18632/oncotarget.16835, PMC5503607, 28424404, 28424404, 16835
- Format
- Citation
- Title
- An Examination of the Role of L-Glutamate and Inosine 5'-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor.
- Creator
-
Blonde, Ginger D, Spector, Alan C
- Abstract/Description
-
The heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a...
Show moreThe heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a concentration series of Maltrin-580, a maltodextrin, in a brief-access test (10-s trials) as a positive control. Similar tests followed with monosodium glutamate (MSG) with and without the ribonucleotide inosine 5'-monophosphate (IMP), but always in the presence of the epithelial sodium channel blocker amiloride (A). Brief-access tests were repeated following short-term (30-min) and long-term (48-h) exposures to MSG + A + IMP and were also conducted with sodium gluconate replacing MSG. Finally, progressive ratio tests were conducted with Maltrin-580 or MSG + A + IMP, to assess appetitive behavior while minimizing satiation. Overall, MSG generated little concentration-dependent responding in either food-restricted WT or KO mice, even in combination with IMP. However, KO mice licked less to the amino acid stimuli, a measure of consummatory behavior in the brief-access tests. In contrast, both groups initiated a similar number of trials and had a similar breakpoint in the progressive ratio task, both measures of appetitive (approach) behavior. Collectively, these results suggest that while the T1R1 + T1R3 receptor is necessary for consummatory responding to MSG (+IMP), other receptors are sufficient to maintain appetitive responding to this "umami" stimulus complex in food-restricted mice.
Show less - Date Issued
- 2017-06-01
- Identifier
- FSU_pmch_28334294, 10.1093/chemse/bjx015, PMC6075476, 28334294, 28334294, 3073965
- Format
- Citation
- Title
- ADAM19: A Novel Target for Metabolic Syndrome in Humans and Mice..
- Creator
-
Weerasekera, Lakshini, Rudnicka, Caroline, Sang, Qing-Xiang, Curran, Joanne E, Johnson, Matthew P, Moses, Eric K, Göring, Harald H H, Blangero, John, Hricova, Jana, Schlaich,...
Show moreWeerasekera, Lakshini, Rudnicka, Caroline, Sang, Qing-Xiang, Curran, Joanne E, Johnson, Matthew P, Moses, Eric K, Göring, Harald H H, Blangero, John, Hricova, Jana, Schlaich, Markus, Matthews, Vance B
Show less - Abstract/Description
-
Obesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with insulin resistance, which may ultimately culminate in type 2 diabetes (T2D). We sought to ascertain whether the human metalloproteinase A Disintegrin and Metalloproteinase 19 (ADAM19) correlates with parameters of the metabolic syndrome in humans and mice. To determine the potential novel role of ADAM19 in the metabolic syndrome, we first conducted microarray studies on peripheral blood...
Show moreObesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with insulin resistance, which may ultimately culminate in type 2 diabetes (T2D). We sought to ascertain whether the human metalloproteinase A Disintegrin and Metalloproteinase 19 (ADAM19) correlates with parameters of the metabolic syndrome in humans and mice. To determine the potential novel role of ADAM19 in the metabolic syndrome, we first conducted microarray studies on peripheral blood mononuclear cells from a well-characterised human cohort. Secondly, we examined the expression of ADAM19 in liver and gonadal white adipose tissue using an in vivo diet induced obesity mouse model. Finally, we investigated the effect of neutralising ADAM19 on diet induced weight gain, insulin resistance in vivo, and liver TNF- levels. Significantly, we show that, in humans, ADAM19 strongly correlates with parameters of the metabolic syndrome, particularly BMI, relative fat, HOMA-IR, and triglycerides. Furthermore, we identified that ADAM19 expression was markedly increased in the liver and gonadal white adipose tissue of obese and T2D mice. Excitingly, we demonstrate in our diet induced obesity mouse model that neutralising ADAM19 therapy results in weight loss, improves insulin sensitivity, and reduces liver TNF- levels. Our novel data suggest that ADAM19 is pro-obesogenic and enhances insulin resistance. Therefore, neutralisation of ADAM19 may be a potential therapeutic approach to treat obesity and T2D.
Show less - Date Issued
- 2017-01-01
- Identifier
- FSU_pmch_28265178, 10.1155/2017/7281986, PMC5318628, 28265178, 28265178
- Format
- Citation
- Title
- OCD candidate gene /EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior.
- Creator
-
Zike, Isaac D, Chohan, Muhammad O, Kopelman, Jared M, Krasnow, Emily N, Flicker, Daniel, Nautiyal, Katherine M, Bubser, Michael, Kellendonk, Christoph, Jones, Carrie K, Stanwood...
Show moreZike, Isaac D, Chohan, Muhammad O, Kopelman, Jared M, Krasnow, Emily N, Flicker, Daniel, Nautiyal, Katherine M, Bubser, Michael, Kellendonk, Christoph, Jones, Carrie K, Stanwood, Gregg, Tanaka, Kenji Fransis, Moore, Holly, Ahmari, Susanne E, Veenstra-VanderWeele, Jeremy
Show less - Abstract/Description
-
Obsessive-compulsive disorder (OCD) is a chronic, disabling condition with inadequate treatment options that leave most patients with substantial residual symptoms. Structural, neurochemical, and behavioral findings point to a significant role for basal ganglia circuits and for the glutamate system in OCD. Genetic linkage and association studies in OCD point to , which encodes the neuronal glutamate/aspartate/cysteine transporter excitatory amino acid transporter 3 (EAAT3)/excitatory amino...
Show moreObsessive-compulsive disorder (OCD) is a chronic, disabling condition with inadequate treatment options that leave most patients with substantial residual symptoms. Structural, neurochemical, and behavioral findings point to a significant role for basal ganglia circuits and for the glutamate system in OCD. Genetic linkage and association studies in OCD point to , which encodes the neuronal glutamate/aspartate/cysteine transporter excitatory amino acid transporter 3 (EAAT3)/excitatory amino acid transporter 1 (EAAC1). However, no previous studies have investigated EAAT3 in basal ganglia circuits or in relation to OCD-related behavior. Here, we report a model of loss based on an excisable STOP cassette that yields successful ablation of EAAT3 expression and function. Using amphetamine as a probe, we found that EAAT3 loss prevents expected increases in () locomotor activity, () stereotypy, and () immediate early gene induction in the dorsal striatum following amphetamine administration. Further, -STOP mice showed diminished grooming in an SKF-38393 challenge experiment, a pharmacologic model of OCD-like grooming behavior. This reduced grooming is accompanied by reduced dopamine D receptor binding in the dorsal striatum of -STOP mice. -STOP mice also exhibit reduced extracellular dopamine concentrations in the dorsal striatum both at baseline and following amphetamine challenge. Viral-mediated restoration of /EAAT3 expression in the midbrain but not in the striatum results in partial rescue of amphetamine-induced locomotion and stereotypy in -STOP mice, consistent with an impact of EAAT3 loss on presynaptic dopaminergic function. Collectively, these findings indicate that the most consistently associated OCD candidate gene impacts basal ganglia-dependent repetitive behaviors.
Show less - Date Issued
- 2017-05-30
- Identifier
- FSU_pmch_28507136, 10.1073/pnas.1701736114, PMC5465902, 28507136, 28507136, 1701736114
- Format
- Citation
- Title
- Vicarious social defeat stress: Bridging the gap between physical and emotional stress..
- Creator
-
Sial, Omar K, Warren, Brandon L, Alcantara, Lyonna F, Parise, Eric M, Bolaños-Guzmán, Carlos A
- Abstract/Description
-
Animal models capable of differentiating the neurobiological intricacies between physical and emotional stress are scarce. Current models rely primarily on physical stressors (e.g., chronic unpredictable or mild stress, social defeat, learned helplessness), and neglect the impact of psychological stress alone. This is surprising given extensive evidence that a traumatic event needs not be directly experienced to produce enduring perturbations on an individual's health and psychological well...
Show moreAnimal models capable of differentiating the neurobiological intricacies between physical and emotional stress are scarce. Current models rely primarily on physical stressors (e.g., chronic unpredictable or mild stress, social defeat, learned helplessness), and neglect the impact of psychological stress alone. This is surprising given extensive evidence that a traumatic event needs not be directly experienced to produce enduring perturbations on an individual's health and psychological well-being. Post-traumatic stress disorder (PTSD), a highly debilitating neuropsychiatric disorder characterized by intense fear of trauma-related stimuli, often occurs in individuals that have only witnessed a traumatic event. By modifying the chronic social defeat stress (CSDS) paradigm to include a witness component (witnessing the social defeat of another mouse), we demonstrate a novel behavioral paradigm capable of inducing a robust behavioral syndrome reminiscent of PTSD in emotionally stressed adult mice. We describe the vicarious social defeat stress (VSDS) model that is capable of inducing a host of behavioral deficits that include social avoidance and other depressive- and anxiety-like phenotypes in adult male mice. VSDS exposure induces weight loss and spike in serum corticosterone (CORT) levels. A month after stress, these mice retain the social avoidant phenotype and have an increased CORT response when exposed to subsequent stress. The VSDS is a novel paradigm capable of inducing emotional stress by isolating physical stress/confrontation in mice. The VSDS model can be used to study the short- and long-term neurobiological consequences of exposure to emotional stress in mice.
Show less - Date Issued
- 2016-01-30
- Identifier
- FSU_pmch_26545443, 10.1016/j.jneumeth.2015.10.012, PMC4691556, 26545443, 26545443, S0165-0270(15)00392-1
- Format
- Citation
- Title
- Nanoscale architecture of cadherin-based cell adhesions.
- Creator
-
Bertocchi, Cristina, Wang, Yilin, Ravasio, Andrea, Hara, Yusuke, Wu, Yao, Sailov, Talgat, Baird, Michelle A, Davidson, Michael W, Zaidel-Bar, Ronen, Toyama, Yusuke, Ladoux,...
Show moreBertocchi, Cristina, Wang, Yilin, Ravasio, Andrea, Hara, Yusuke, Wu, Yao, Sailov, Talgat, Baird, Michelle A, Davidson, Michael W, Zaidel-Bar, Ronen, Toyama, Yusuke, Ladoux, Benoit, Mege, Rene-Marc, Kanchanawong, Pakorn
Show less - Abstract/Description
-
Multicellularity in animals requires dynamic maintenance of cell-cell contacts. Intercellularly ligated cadherins recruit numerous proteins to form supramolecular complexes that connect with the actin cytoskeleton and support force transmission. However, the molecular organization within such structures remains unknown. Here we mapped protein organization in cadherin-based adhesions by super-resolution microscopy, revealing a multi-compartment nanoscale architecture, with the plasma-membrane...
Show moreMulticellularity in animals requires dynamic maintenance of cell-cell contacts. Intercellularly ligated cadherins recruit numerous proteins to form supramolecular complexes that connect with the actin cytoskeleton and support force transmission. However, the molecular organization within such structures remains unknown. Here we mapped protein organization in cadherin-based adhesions by super-resolution microscopy, revealing a multi-compartment nanoscale architecture, with the plasma-membrane-proximal cadherin-catenin compartment segregated from the actin cytoskeletal compartment, bridged by an interface zone containing vinculin. Vinculin position is determined by α-catenin, and following activation, vinculin can extend ∼30 nm to bridge the cadherin-catenin and actin compartments, while modulating the nanoscale positions of the actin regulators zyxin and VASP. Vinculin conformational activation requires tension and tyrosine phosphorylation, regulated by Abl kinase and PTP1B phosphatase. Such modular architecture provides a structural framework for mechanical and biochemical signal integration by vinculin, which may differentially engage cadherin-catenin complexes with the actomyosin machinery to regulate cell adhesions.
Show less - Date Issued
- 2017-01-01
- Identifier
- FSU_pmch_27992406, 10.1038/ncb3456, PMC5421576, 27992406, 27992406, ncb3456
- Format
- Citation
- Title
- Withaferin-A reduces type I collagen expression in vitro and inhibits development of myocardial fibrosis in vivo.
- Creator
-
Challa, Azariyas A, Vukmirovic, Milica, Blackmon, John, Stefanovic, Branko
- Abstract/Description
-
Type I collagen is the most abundant protein in the human body. Its excessive synthesis results in fibrosis of various organs. Fibrosis is a major medical problem without an existing cure. Excessive synthesis of type I collagen in fibrosis is primarily due to stabilization of collagen mRNAs. We recently reported that intermediate filaments composed of vimentin regulate collagen synthesis by stabilizing collagen mRNAs. Vimentin is a primary target of Withaferin-A (WF-A). Therefore, we...
Show moreType I collagen is the most abundant protein in the human body. Its excessive synthesis results in fibrosis of various organs. Fibrosis is a major medical problem without an existing cure. Excessive synthesis of type I collagen in fibrosis is primarily due to stabilization of collagen mRNAs. We recently reported that intermediate filaments composed of vimentin regulate collagen synthesis by stabilizing collagen mRNAs. Vimentin is a primary target of Withaferin-A (WF-A). Therefore, we hypothesized that WF-A may reduce type I collagen production by disrupting vimentin filaments and decreasing the stability of collagen mRNAs. This study is to determine if WF-A exhibits anti-fibrotic properties in vitro and in vivo and to elucidate the molecular mechanisms of its action. In lung, skin and heart fibroblasts WF-A disrupted vimentin filaments at concentrations of 0.5-1.5 µM and reduced 3 fold the half-lives of collagen α1(I) and α2(I) mRNAs and protein expression. In addition, WF-A inhibited TGF-β1 induced phosphorylation of TGF-β1 receptor I, Smad3 phosphorylation and transcription of collagen genes. WF-A also inhibited in vitro activation of primary hepatic stellate cells and decreased their type I collagen expression. In mice, administration of 4 mg/kg WF-A daily for 2 weeks reduced isoproterenol-induced myocardial fibrosis by 50%. Our findings provide strong evidence that Withaferin-A could act as an anti-fibrotic compound against fibroproliferative diseases, including, but not limited to, cardiac interstitial fibrosis.
Show less - Date Issued
- 2012-01-01
- Identifier
- FSU_pmch_22900077, 10.1371/journal.pone.0042989, PMC3416765, 22900077, 22900077, PONE-D-12-16085
- Format
- Citation
- Title
- The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice.
- Creator
-
Sørensen, Gunnar, Reddy, India A, Weikop, Pia, Graham, Devon L, Stanwood, Gregg D, Wortwein, Gitta, Galli, Aurelio, Fink-Jensen, Anders
- Abstract/Description
-
Glucagon-like peptide 1 (GLP-1) analogues are used for the treatment of type 2 diabetes. The ability of the GLP-1 system to decrease food intake in rodents has been well described and parallels results from clinical trials. GLP-1 receptors are expressed in the brain, including within the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Dopaminergic neurons in the VTA project to the NAc, and these neurons play a pivotal role in the rewarding effects of drugs of abuse. Based on the...
Show moreGlucagon-like peptide 1 (GLP-1) analogues are used for the treatment of type 2 diabetes. The ability of the GLP-1 system to decrease food intake in rodents has been well described and parallels results from clinical trials. GLP-1 receptors are expressed in the brain, including within the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Dopaminergic neurons in the VTA project to the NAc, and these neurons play a pivotal role in the rewarding effects of drugs of abuse. Based on the anatomical distribution of GLP-1 receptors in the brain and the well-established effects of GLP-1 on food reward, we decided to investigate the effect of the GLP-1 analogue exendin-4 on cocaine- and dopamine D1-receptor agonist-induced hyperlocomotion, on acute and chronic cocaine self-administration, on cocaine-induced striatal dopamine release in mice and on cocaine-induced c-fos activation. Here, we report that GLP-1 receptor stimulation reduces acute and chronic cocaine self-administration and attenuates cocaine-induced hyperlocomotion. In addition, we show that peripheral administration of exendin-4 reduces cocaine-induced elevation of striatal dopamine levels and striatal c-fos expression implicating central GLP-1 receptors in these responses. The present results demonstrate that the GLP-1 system modulates cocaine's effects on behavior and dopamine homeostasis, indicating that the GLP-1 receptor may be a novel target for the pharmacological treatment of drug addiction.
Show less - Date Issued
- 2015-10-01
- Identifier
- FSU_pmch_26072178, 10.1016/j.physbeh.2015.06.013, PMC4668599, 26072178, 26072178, S0031-9384(15)00349-2
- Format
- Citation
- Title
- The transcription factor YY1 is a novel substrate for Aurora B kinase at G2/M transition of the cell cycle.
- Creator
-
Kassardjian, Ari, Rizkallah, Raed, Riman, Sarah, Renfro, Samuel H, Alexander, Karen E, Hurt, Myra M
- Abstract/Description
-
Yin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and...
Show moreYin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and Casein kinase 2α (CK2 α) were the first two kinases identified to phosphorylate YY1. In this study, we identify a third kinase. We report that YY1 is a novel substrate of the Aurora B kinase both in vitro and in vivo. Serine 184 phosphorylation of YY1 by Aurora B is cell cycle regulated and peaks at G2/M and is rapidly dephosphorylated, likely by protein phosphatase 1 (PP1) as the cells enter G1. Aurora A and Aurora C can also phosphorylate YY1 in vitro, but at serine/threonine residues other than serine 184. We present evidence that phosphorylation of YY1 in the central glycine/alanine (G/A)-rich region is important for DNA binding activity, with a potential phosphorylation/acetylation interplay regulating YY1 function. Given their importance in mitosis and overexpression in human cancers, Aurora kinases have been identified as promising therapeutic targets. Increasing our understanding of Aurora substrates will add to the understanding of their signaling pathways.
Show less - Date Issued
- 2012-01-01
- Identifier
- FSU_pmch_23226345, 10.1371/journal.pone.0050645, PMC3511337, 23226345, 23226345, PONE-D-12-19550
- Format
- Citation
- Title
- A tunable artificial circadian clock in clock-defective mice.
- Creator
-
D'Alessandro, Matthew, Beesley, Stephen, Kim, Jae Kyoung, Chen, Rongmin, Abich, Estela, Cheng, Wayne, Yi, Paul, Takahashi, Joseph S, Lee, Choogon
- Abstract/Description
-
Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of...
Show moreSelf-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of generating robust, tunable circadian rhythms. In mice deficient in Per1 and Per2 genes (thus lacking circadian rhythms), we artificially generate PER2 rhythms and restore circadian sleep/wake cycles with an inducible Per2 transgene. Our artificial clock is tunable as the period and phase of the rhythms can be modulated predictably. This feature, and other design principles of our work, might enhance the study and treatment of circadian dysfunction and broader aspects of physiology involving biological oscillators.
Show less - Date Issued
- 2015-11-30
- Identifier
- FSU_pmch_26617050, 10.1038/ncomms9587, PMC4674671, 26617050, 26617050, ncomms9587
- Format
- Citation
- Title
- Viral-mediated Zif268 expression in the prefrontal cortex protects against gonadectomy-induced working memory, long-term memory, and social interaction deficits in male rats.
- Creator
-
Dossat, Amanda M, Jourdi, Hussam, Wright, Katherine N, Strong, Caroline E, Sarkar, Ambalika, Kabbaj, Mohamed
- Abstract/Description
-
In humans, some males experience reductions in testosterone levels, as a natural consequence of aging or in the clinical condition termed hypogonadism, which are associated with impaired cognitive performance and mood disorder(s). Some of these behavioral deficits can be reversed by testosterone treatment. Our previous work in rats reported that sex differences in the expression of the transcription factor Zif268, a downstream target of testosterone, within the medial prefrontal cortex (mPFC)...
Show moreIn humans, some males experience reductions in testosterone levels, as a natural consequence of aging or in the clinical condition termed hypogonadism, which are associated with impaired cognitive performance and mood disorder(s). Some of these behavioral deficits can be reversed by testosterone treatment. Our previous work in rats reported that sex differences in the expression of the transcription factor Zif268, a downstream target of testosterone, within the medial prefrontal cortex (mPFC) mediates sex differences in social interaction. In the present study, we aimed to examine the effects of gonadectomy (GNX) in male rats on mPFC Zif268 expression, mood and cognitive behaviors. We also examined whether reinstitution of Zif268 in GNX rats will correct some of the behavioral deficits observed following GNX. Our results show that GNX induced a downregulation of Zif268 protein in the mPFC, which was concomitant with impaired memory in the y-maze and spontaneous object recognition test, reduced social interaction time, and depression-like behaviors in the forced swim test. Reinstitution of mPFC Zif268, using a novel adeno-associated-viral (AAV) construct, abrogated GNX-induced working memory and long-term memory impairments, and reductions in social interaction time, but not GNX-induced depression-like behaviors. These findings suggest that mPFC Zif268 exerts beneficial effects on memory and social interaction, and could be a potential target for novel treatments for behavioral impairments observed in hypogonadal and aged men with declining levels of gonadal hormones.
Show less - Date Issued
- 2017-01-06
- Identifier
- FSU_pmch_27816701, 10.1016/j.neuroscience.2016.10.062, PMC5154846, 27816701, 27816701, S0306-4522(16)30603-0
- Format
- Citation
- Title
- Zinc and neurogenesis: making new neurons from development to adulthood..
- Creator
-
Levenson, Cathy W, Morris, Deborah
- Abstract/Description
-
Stem cell proliferation, neuronal differentiation, cell survival, and migration in the central nervous system are all important steps in the normal process of neurogenesis. These mechanisms are highly active during gestational and early neonatal brain development. Additionally, in select regions of the brain, stem cells give rise to new neurons throughout the human lifespan. Recent work has revealed key roles for the essential trace element zinc in the control of both developmental and adult...
Show moreStem cell proliferation, neuronal differentiation, cell survival, and migration in the central nervous system are all important steps in the normal process of neurogenesis. These mechanisms are highly active during gestational and early neonatal brain development. Additionally, in select regions of the brain, stem cells give rise to new neurons throughout the human lifespan. Recent work has revealed key roles for the essential trace element zinc in the control of both developmental and adult neurogenesis. Given the prevalence of zinc deficiency, these findings have implications for brain development, cognition, and the regulation of mood.
Show less - Date Issued
- 2011-03-01
- Identifier
- FSU_pmch_22332038, 10.3945/an.110.000174, PMC3065768, 22332038, 22332038, 000174
- Format
- Citation
- Title
- Reversal Learning Deficits Associated with Increased Frontal Cortical Brain-Derived Neurotrophic Factor Tyrosine Kinase B Signaling in a Prenatal Cocaine Exposure Mouse Model.
- Creator
-
McCarthy, Deirdre M, Bell, Genevieve A, Cannon, Elisa N, Mueller, Kaly A, Huizenga, Megan N, Sadri-Vakili, Ghazaleh, Fadool, Debra A, Bhide, Pradeep G
- Abstract/Description
-
Prenatal cocaine exposure remains a major public health concern because of its adverse impact on cognitive function in children and adults. We report that prenatal cocaine exposure produces significant deficits in reversal learning, a key component of cognitive flexibility, in a mouse model. We used an olfactory reversal learning paradigm and found that the prenatally cocaine-exposed mice showed a marked failure to learn the reversed paradigm. Because brain-derived neurotrophic factor (BDNF)...
Show morePrenatal cocaine exposure remains a major public health concern because of its adverse impact on cognitive function in children and adults. We report that prenatal cocaine exposure produces significant deficits in reversal learning, a key component of cognitive flexibility, in a mouse model. We used an olfactory reversal learning paradigm and found that the prenatally cocaine-exposed mice showed a marked failure to learn the reversed paradigm. Because brain-derived neurotrophic factor (BDNF) is a key regulator of cognitive functions, and because prenatal cocaine exposure increases the expression of BDNF and the phosphorylated form of its receptor, tyrosine kinase B (TrkB), we examined whether BDNF-TrkB signaling is involved in mediating the reversal learning deficit in prenatally cocaine-exposed mice. Systemic administration of a selective TrkB receptor antagonist restored normal reversal learning in prenatally cocaine-exposed mice, suggesting that increased BDNF-TrkB signaling may be an underlying mechanism of reversal learning deficits. Our findings provide novel mechanistic insights into the reversal learning phenomenon and may have significant translational implications because impaired cognitive flexibility is a key symptom in psychiatric conditions of developmental onset.
Show less - Date Issued
- 2016-01-01
- Identifier
- FSU_pmch_27951531, 10.1159/000452739, PMC5360472, 27951531, 27951531, 000452739
- Format
- Citation
- Title
- Prenatal nicotine exposure mouse model showing hyperactivity, reduced cingulate cortex volume, reduced dopamine turnover, and responsiveness to oral methylphenidate treatment.
- Creator
-
Zhu, Jinmin, Zhang, Xuan, Xu, Yuehang, Spencer, Thomas J, Biederman, Joseph, Bhide, Pradeep G
- Abstract/Description
-
Cigarette smoking, nicotine replacement therapy, and smokeless tobacco use during pregnancy are associated with cognitive disabilities later in life in children exposed prenatally to nicotine. The disabilities include attention deficit hyperactivity disorder (ADHD) and conduct disorder. However, the structural and neurochemical bases of these cognitive deficits remain unclear. Using a mouse model we show that prenatal nicotine exposure produces hyperactivity, selective decreases in cingulate...
Show moreCigarette smoking, nicotine replacement therapy, and smokeless tobacco use during pregnancy are associated with cognitive disabilities later in life in children exposed prenatally to nicotine. The disabilities include attention deficit hyperactivity disorder (ADHD) and conduct disorder. However, the structural and neurochemical bases of these cognitive deficits remain unclear. Using a mouse model we show that prenatal nicotine exposure produces hyperactivity, selective decreases in cingulate cortical volume, and radial thickness, as well as decreased dopamine turnover in the frontal cortex. The hyperactivity occurs in both male and female offspring and peaks during the "active" or dark phase of the light/dark cycle. These features of the mouse model closely parallel the human ADHD phenotype, whether or not the ADHD is associated with prenatal nicotine exposure. A single oral, but not intraperitoneal, administration of a therapeutic equivalent dose (0.75 mg/kg) of methylphenidate decreases the hyperactivity and increases the dopamine turnover in the frontal cortex of the prenatally nicotine exposed mice, once again paralleling the therapeutic effects of this compound in ADHD subjects. Collectively, our data suggest that the prenatal nicotine exposure mouse model has striking parallels to the ADHD phenotype not only in behavioral, neuroanatomical, and neurochemical features, but also with respect to responsiveness of the behavioral phenotype to methylphenidate treatment. The behavioral, neurochemical, and anatomical biomarkers in the mouse model could be valuable for evaluating new therapies for ADHD and mechanistic investigations into its etiology.
Show less - Date Issued
- 2012-07-04
- Identifier
- FSU_pmch_22764249, 10.1523/JNEUROSCI.1041-12.2012, PMC3417040, 22764249, 22764249, 32/27/9410
- Format
- Citation
- Title
- Serine-threonine kinase receptor-associated protein (STRAP) regulates translation of type I collagen mRNAs.
- Creator
-
Vukmirovic, Milica, Manojlovic, Zarko, Stefanovic, Branko
- Abstract/Description
-
Type I collagen is the most abundant protein in the human body and is composed of two α1(I) and one α2(I) polypeptides which assemble into a triple helix. For the proper assembly of the collagen triple helix, the individual polypeptides must be translated in coordination. Here, we show that serine-threonine kinase receptor-associated protein (STRAP) is tethered to collagen mRNAs by interaction with LARP6. LARP6 is a protein which directly binds the 5' stem-loop (5'SL) present in collagen α1(I...
Show moreType I collagen is the most abundant protein in the human body and is composed of two α1(I) and one α2(I) polypeptides which assemble into a triple helix. For the proper assembly of the collagen triple helix, the individual polypeptides must be translated in coordination. Here, we show that serine-threonine kinase receptor-associated protein (STRAP) is tethered to collagen mRNAs by interaction with LARP6. LARP6 is a protein which directly binds the 5' stem-loop (5'SL) present in collagen α1(I) and α2(I) mRNAs, but it interacts with STRAP with its C-terminal domain, which is not involved in binding 5'SL. Being tethered to collagen mRNAs, STRAP prevents unrestricted translation, primarily that of collagen α2(I) mRNAs, by interacting with eukaryotic translation initiation factor 4A (eIF4A). In the absence of STRAP, more collagen α2(I) mRNA can be pulled down with eIF4A, and collagen α2(I) mRNA is unrestrictedly loaded onto the polysomes. This results in an imbalance of synthesis of α1(I) and α2(I) polypeptides, in hypermodifications of α1(I) polypeptide, and in inefficient assembly of the polypeptides into a collagen trimer and their secretion as monomers. These defects can be partially restored by supplementing STRAP. Thus, we discovered STRAP as a novel regulator of the coordinated translation of collagen mRNAs.
Show less - Date Issued
- 2013-10-01
- Identifier
- FSU_pmch_23918805, 10.1128/MCB.00195-13, PMC3811873, 23918805, 23918805, MCB.00195-13
- Format
- Citation
- Title
- Valproic acid suppresses collagen by selective regulation of Smads in conjunctival fibrosis.
- Creator
-
Seet, Li-Fong, Toh, Li Zhen, Finger, Sharon N, Chu, Stephanie W L, Stefanovic, Branko, Wong, Tina T
- Abstract/Description
-
Overproduction of type I collagen is associated with a wide range of fibrotic diseases as well as surgical failure such as in glaucoma filtration surgery (GFS). Its modulation is therefore of clinical importance. Valproic acid (VPA) is known to reduce collagen in a variety of tissues with unclear mechanism of action. In this report, we demonstrate that VPA inhibited collagen production in both conjunctival fibroblasts and the mouse model of GFS. In fibroblasts, VPA decreased type I collagen...
Show moreOverproduction of type I collagen is associated with a wide range of fibrotic diseases as well as surgical failure such as in glaucoma filtration surgery (GFS). Its modulation is therefore of clinical importance. Valproic acid (VPA) is known to reduce collagen in a variety of tissues with unclear mechanism of action. In this report, we demonstrate that VPA inhibited collagen production in both conjunctival fibroblasts and the mouse model of GFS. In fibroblasts, VPA decreased type I collagen expression which intensified with longer drug exposure and suppressed steady-state type I collagen promoter activity. Moreover, VPA decreased Smad2, Smad3 and Smad4 but increased Smad6 expression with a similar intensity-exposure profile. Reduction of Smad3 using small hairpin RNA and/or overexpression of Smad6 resulted in decreased collagen expression which was exacerbated when VPA was simultaneously present. Furthermore, fibrogenic TGF-β2 failed to induce collagen when VPA was present, as opposed to the myofibroblast markers, beta-actin, alpha-smooth muscle actin and tenascin-C, which were elevated by TGF-β2. VPA suppressed p3TP-Lux luciferase activity and selectively rescued Smad6 expression from suppression by TGF-β2. Notably, SMAD6 overexpression reduced the effectiveness of TGF-β2 in inducing collagen expression. In corroboration, VPA inhibited type I collagen but increased Smad6 expression in the late phase of wound healing in the mouse model of GFS. Taken together, our data indicate that VPA has the capacity to effectively suppress both steady-state and fibrogenic activation of type I collagen expression by modulating Smad expression. Hence, VPA is potentially applicable as an anti-fibrotic therapeutic by targeting collagen. Key message: • VPA modulates type I collagen expression via members of the Smad family. • VPA suppresses Smad2, Smad3 and Smad4 but upregulates Smad6. • Smad3 and Smad6 are involved in VPA regulation of steady-state collagen expression. • Smad6 is involved in VPA modulation of TGF-β-stimulated collagen expression. • VPA reduces collagen and upregulates Smad6 in the mouse model of glaucoma filtration surgery.
Show less - Date Issued
- 2016-03-01
- Identifier
- FSU_pmch_26507880, 10.1007/s00109-015-1358-z, PMC4803820, 26507880, 26507880, 10.1007/s00109-015-1358-z
- Format
- Citation
- Title
- miRNAs are required for generating a time delay critical for the circadian oscillator.
- Creator
-
Chen, Rongmin, D'Alessandro, Matthew, Lee, Choogon
- Abstract/Description
-
Circadian clocks coordinate an organism's activities and regulate metabolic homeostasis in relation to daily environmental changes, most notably light/dark cycles. As in other organisms, the timekeeping mechanism in mammals depends on a self-sustaining transcriptional negative feedback loop with a built-in time delay in feedback inhibition. Although the time delay is essential for generating a slow, self-sustaining negative feedback loop with a period close to 24 hr, the exact mechanisms...
Show moreCircadian clocks coordinate an organism's activities and regulate metabolic homeostasis in relation to daily environmental changes, most notably light/dark cycles. As in other organisms, the timekeeping mechanism in mammals depends on a self-sustaining transcriptional negative feedback loop with a built-in time delay in feedback inhibition. Although the time delay is essential for generating a slow, self-sustaining negative feedback loop with a period close to 24 hr, the exact mechanisms underlying the time delay are not known. Here, we show that RNAi mediated by microRNAs (miRNAs) is an essential mechanism in generating the time delay. In Dicer-deficient (and thus miRNA-deficient) cells and mice, circadian rhythms were dramatically shortened (by ∼2 hr), although the rhythms remained robust. The period shortening was caused by faster PER1 and PER2 translation in the Dicer-deficient cells. We also identified three specific miRNAs that regulate Per expression and showed that knockdown of these miRNAs in wild-type cells also shortened the circadian period. Consistent with the canonical function of miRNAs as translational modulators of target genes and their widespread roles in cell physiology, circadian rhythms are also modulated by miRNA-mediated RNAi acting on posttranscriptional regulation of key clock genes. Our present study definitively shows that RNAi is an important modulator of circadian rhythms by controlling the pace of PER synthesis and presents a novel layer of regulation for the clock.
Show less - Date Issued
- 2013-10-21
- Identifier
- FSU_pmch_24094851, 10.1016/j.cub.2013.08.005, PMC3809330, 24094851, 24094851, S0960-9822(13)00981-0
- Format
- Citation
- Title
- A novel role of vimentin filaments: binding and stabilization of collagen mRNAs..
- Creator
-
Challa, Azariyas A, Stefanovic, Branko
- Abstract/Description
-
The stem-loop in the 5' untranslated region (UTR) of collagen α1(I) and α2(I) mRNAs (5'SL) is the key element regulating their stability and translation. Stabilization of collagen mRNAs is the predominant mechanism for high collagen expression in fibrosis. LARP6 binds the 5'SL of α1(I) and α2(I) mRNAs with high affinity. Here, we report that vimentin filaments associate with collagen mRNAs in a 5'SL- and LARP6-dependent manner and stabilize collagen mRNAs. LARP6 interacts with vimentin...
Show moreThe stem-loop in the 5' untranslated region (UTR) of collagen α1(I) and α2(I) mRNAs (5'SL) is the key element regulating their stability and translation. Stabilization of collagen mRNAs is the predominant mechanism for high collagen expression in fibrosis. LARP6 binds the 5'SL of α1(I) and α2(I) mRNAs with high affinity. Here, we report that vimentin filaments associate with collagen mRNAs in a 5'SL- and LARP6-dependent manner and stabilize collagen mRNAs. LARP6 interacts with vimentin filaments through its La domain and colocalizes with the filaments in vivo. Knockdown of LARP6 by small interfering RNA (siRNA) or mutation of the 5'SL abrogates the interaction of collagen mRNAs with vimentin filaments. Vimentin knockout fibroblasts produce reduced amounts of type I collagen due to decreased stability of collagen α1(I) and α2(I) mRNAs. Disruption of vimentin filaments using a drug or by expression of dominant-negative desmin reduces type I collagen expression, primarily due to decreased stability of collagen mRNAs. RNA fluorescence in situ hybridization (FISH) experiments show that collagen α1(I) and α2(I) mRNAs are associated with vimentin filaments in vivo. Thus, vimentin filaments may play a role in the development of tissue fibrosis by stabilizing collagen mRNAs. This finding will serve as a rationale for targeting vimentin in the development of novel antifibrotic therapies.
Show less - Date Issued
- 2011-09-01
- Identifier
- FSU_pmch_21746880, 10.1128/MCB.05263-11, PMC3165730, 21746880, 21746880, MCB.05263-11
- Format
- Citation
- Title
- The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1.
- Creator
-
Lee, Hyeong-min, Chen, Rongmin, Kim, Hyukmin, Etchegaray, Jean-Pierre, Weaver, David R, Lee, Choogon
- Abstract/Description
-
Mounting evidence suggests that PERIOD (PER) proteins play a central role in setting the speed (period) and phase of the circadian clock. Pharmacological and genetic studies have shown that changes in PER phosphorylation kinetics are associated with changes in circadian rhythm period and phase, which can lead to sleep disorders such as Familial Advanced Sleep Phase Syndrome in humans. We and others have shown that casein kinase 1δ and ε (CK1δ/ε) are essential PER kinases, but it is clear that...
Show moreMounting evidence suggests that PERIOD (PER) proteins play a central role in setting the speed (period) and phase of the circadian clock. Pharmacological and genetic studies have shown that changes in PER phosphorylation kinetics are associated with changes in circadian rhythm period and phase, which can lead to sleep disorders such as Familial Advanced Sleep Phase Syndrome in humans. We and others have shown that casein kinase 1δ and ε (CK1δ/ε) are essential PER kinases, but it is clear that additional, unknown mechanisms are also crucial for regulating the kinetics of PER phosphorylation. Here we report that circadian periodicity is determined primarily through PER phosphorylation kinetics set by the balance between CK1δ/ε and protein phosphatase 1 (PP1). In CK1δ/ε-deficient cells, PER phosphorylation is severely compromised and nonrhythmic, and the PER proteins are constitutively cytoplasmic. However, when PP1 is disrupted, PER phosphorylation is dramatically accelerated; the same effect is not seen when PP2A is disrupted. Our work demonstrates that the speed and rhythmicity of PER phosphorylation are controlled by the balance between CK1δ/ε and PP1, which in turn determines the period of the circadian oscillator. Thus, our findings provide clear insights into the molecular basis of how the period and phase of our daily rhythms are determined.
Show less - Date Issued
- 2011-09-27
- Identifier
- FSU_pmch_21930935, 10.1073/pnas.1107178108, PMC3182690, 21930935, 21930935, 1107178108
- Format
- Citation
- Title
- Margatoxin-bound quantum dots as a novel inhibitor of the voltage-gated ion channel Kv1.3.
- Creator
-
Schwartz, Austin B, Kapur, Anshika, Wang, Wentao, Huang, Zhenbo, Fardone, Erminia, Palui, Goutam, Mattoussi, Hedi, Fadool, Debra Ann
- Abstract/Description
-
Venom-derived ion channel inhibitors have strong channel selectivity, potency, and stability; however, tracking delivery to their target can be challenging. Herein, we utilized luminescent quantum dots (QDs) conjugated to margatoxin (MgTx) as a traceable vehicle to target a voltage-dependent potassium channel, Kv1.3, which has a select distribution and well-characterized role in immunity, glucose metabolism, and sensory ability. We screened both unconjugated (MgTx) and conjugated MgTx (QD...
Show moreVenom-derived ion channel inhibitors have strong channel selectivity, potency, and stability; however, tracking delivery to their target can be challenging. Herein, we utilized luminescent quantum dots (QDs) conjugated to margatoxin (MgTx) as a traceable vehicle to target a voltage-dependent potassium channel, Kv1.3, which has a select distribution and well-characterized role in immunity, glucose metabolism, and sensory ability. We screened both unconjugated (MgTx) and conjugated MgTx (QD-MgTx) for their ability to inhibit Shaker channels Kv1.1 to Kv1.7 using patch-clamp electrophysiology in HEK293 cells. Our data indicate that MgTx inhibits 79% of the outward current in Kv1.3-transfected cells and that the QD-MgTx conjugate is able to achieve a similar level of block, albeit a slightly reduced efficacy (66%) and at a slower time course (50% block by 10.9 ± 1.1 min, MgTx; vs. 15.3 ± 1.2 min, QD-MgTx). Like the unbound peptide, the QD-MgTx conjugate inhibits both Kv1.3 and Kv1.2 at a 1 nM concentration, whereas it does not inhibit other screened Shaker channels. We tested the ability of QD-MgTx to inhibit native Kv1.3 expressed in the mouse olfactory bulb (OB). In brain slices of the OB, the conjugate acted similarly to MgTx to inhibit Kv1.3, causing an increased action potential firing frequency attributed to decreased intraburst duration rather than interspike interval. Our data demonstrate a retention of known biophysical properties associated with block of the vestibule of Kv1.3 by QD-MgTx conjugate compared to that of MgTx, inferring QDs could provide a useful tool to deliver ion channel inhibitors to targeted tissues in vivo.
Show less - Date Issued
- 2017-02-01
- Identifier
- FSU_pmch_27861889, 10.1111/jnc.13891, PMC5250575, 27861889, 27861889
- Format
- Citation
- Title
- Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis.
- Creator
-
Kettner, Nicole M, Voicu, Horatio, Finegold, Milton J, Coarfa, Cristian, Sreekumar, Arun, Putluri, Nagireddy, Katchy, Chinenye A, Lee, Choogon, Moore, David D, Fu, Loning
- Abstract/Description
-
Chronic jet lag induces spontaneous hepatocellular carcinoma (HCC) in wild-type mice following a mechanism very similar to that observed in obese humans. The process initiates with non-alcoholic fatty liver disease (NAFLD) that progresses to steatohepatitis and fibrosis before HCC detection. This pathophysiological pathway is driven by jet-lag-induced genome-wide gene deregulation and global liver metabolic dysfunction, with nuclear receptor-controlled cholesterol/bile acid and xenobiotic...
Show moreChronic jet lag induces spontaneous hepatocellular carcinoma (HCC) in wild-type mice following a mechanism very similar to that observed in obese humans. The process initiates with non-alcoholic fatty liver disease (NAFLD) that progresses to steatohepatitis and fibrosis before HCC detection. This pathophysiological pathway is driven by jet-lag-induced genome-wide gene deregulation and global liver metabolic dysfunction, with nuclear receptor-controlled cholesterol/bile acid and xenobiotic metabolism among the top deregulated pathways. Ablation of farnesoid X receptor dramatically increases enterohepatic bile acid levels and jet-lag-induced HCC, while loss of constitutive androstane receptor (CAR), a well-known liver tumor promoter that mediates toxic bile acid signaling, inhibits NAFLD-induced hepatocarcinogenesis. Circadian disruption activates CAR by promoting cholestasis, peripheral clock disruption, and sympathetic dysfunction.
Show less - Date Issued
- 2016-12-12
- Identifier
- FSU_pmch_27889186, 10.1016/j.ccell.2016.10.007, PMC5695235, 27889186, 27889186, S1535-6108(16)30494-9
- Format
- Citation
- Title
- Tet1 in Nucleus Accumbens Opposes Depression- and Anxiety-Like Behaviors.
- Creator
-
Feng, Jian, Pena, Catherine J, Purushothaman, Immanuel, Engmann, Olivia, Walker, Deena, Brown, Amber N, Issler, Orna, Doyle, Marie, Harrigan, Eileen, Mouzon, Ezekiell, Vialou,...
Show moreFeng, Jian, Pena, Catherine J, Purushothaman, Immanuel, Engmann, Olivia, Walker, Deena, Brown, Amber N, Issler, Orna, Doyle, Marie, Harrigan, Eileen, Mouzon, Ezekiell, Vialou, Vincent, Shen, Li, Dawlaty, Meelad M, Jaenisch, Rudolf, Nestler, Eric J
Show less - Abstract/Description
-
Depression is a leading cause of disease burden, yet current therapies fully treat
Show moreDepression is a leading cause of disease burden, yet current therapies fully treat <50% of affected individuals. Increasing evidence implicates epigenetic mechanisms in depression and antidepressant action. Here we examined a possible role for the DNA dioxygenase, ten-eleven translocation protein 1 (TET1), in depression-related behavioral abnormalities. We applied chronic social defeat stress, an ethologically validated mouse model of depression-like behaviors, and examined Tet1 expression changes in nucleus accumbens (NAc), a key brain reward region. We show decreased Tet1 expression in NAc in stress-susceptible mice only. Surprisingly, selective knockout of Tet1 in NAc neurons of adult mice produced antidepressant-like effects in several behavioral assays. To identify Tet1 targets that mediate these actions, we performed RNAseq on NAc after conditional deletion of Tet1 and found that immune-related genes are the most highly dysregulated. Moreover, many of these genes are also upregulated in the NAc of resilient mice after chronic social defeat stress. These findings reveal a novel role for TET1, an enzyme important for DNA hydroxymethylation, in the brain's reward circuitry in modulating stress responses in mice. We also identify a subset of genes that are regulated by TET1 in this circuitry. These findings provide new insight into the pathophysiology of depression, which can aid in future antidepressant drug discovery efforts.
Show less - Date Issued
- 2017-07-01
- Identifier
- FSU_pmch_28074830, 10.1038/npp.2017.6, PMC5518912, 28074830, 28074830, npp20176
- Format
- Citation
- Title
- Comparative Transcriptomic Analysis of the Effects of Antidepressant Drugs in Stress-Susceptible Mice.
- Creator
-
Duclot, Florian, Kabbaj, Mohamed
- Date Issued
- 2017-02-15
- Identifier
- FSU_pmch_28089023, 10.1016/j.biopsych.2016.10.022, PMC5384644, 28089023, 28089023, S0006-3223(16)32969-9
- Format
- Citation
- Title
- Phase Analysis of Metabolic Oscillations and Membrane Potential in Pancreatic Islet β-Cells.
- Creator
-
Merrins, Matthew J, Poudel, Chetan, McKenna, Joseph P, Ha, Joon, Sherman, Arthur, Bertram, Richard, Satin, Leslie S
- Abstract/Description
-
Metabolism in islet β-cells displays oscillations that can trigger pulses of electrical activity and insulin secretion. There has been a decades-long debate among islet biologists about whether metabolic oscillations are intrinsic or occur in response to oscillations in intracellular Ca(2+) that result from bursting electrical activity. In this article, the dynamics of oscillatory metabolism were investigated using five different optical reporters. Reporter activity was measured...
Show moreMetabolism in islet β-cells displays oscillations that can trigger pulses of electrical activity and insulin secretion. There has been a decades-long debate among islet biologists about whether metabolic oscillations are intrinsic or occur in response to oscillations in intracellular Ca(2+) that result from bursting electrical activity. In this article, the dynamics of oscillatory metabolism were investigated using five different optical reporters. Reporter activity was measured simultaneously with membrane potential bursting to determine the phase relationships between the metabolic oscillations and electrical activity. Our experimental findings suggest that Ca(2+) entry into β-cells stimulates the rate of mitochondrial metabolism, accounting for the depletion of glycolytic intermediates during each oscillatory burst. We also performed Ca(2+) clamp tests in which we clamped membrane potential with the KATP channel-opener diazoxide and KCl to fix Ca(2+) at an elevated level. These tests confirm that metabolic oscillations do not require Ca(2+) oscillations, but show that Ca(2+) plays a larger role in shaping metabolic oscillations than previously suspected. A dynamical picture of the mechanisms of oscillations emerged that requires the restructuring of contemporary mathematical β-cell models, including our own dual oscillator model. In the companion article, we modified our model to account for these new data.
Show less - Date Issued
- 2016-02-02
- Identifier
- FSU_pmch_26840733, 10.1016/j.bpj.2015.12.029, PMC4744170, 26840733, 26840733, S0006-3495(15)04813-4
- Format
- Citation
- Title
- Kaposi's Sarcoma-Associated Herpesvirus Inhibitor of cGAS (KicGAS), Encoded by ORF52, Is an Abundant Tegument Protein and Is Required for Production of Infectious Progeny Viruses.
- Creator
-
Li, Wenwei, Avey, Denis, Fu, Bishi, Wu, Jian-Jun, Ma, Siming, Liu, Xia, Zhu, Fanxiu
- Abstract/Description
-
Although Kaposi's sarcoma-associated herpesvirus (KSHV) ORF52 (also known as KSHV inhibitor of cGAS [KicGAS]) has been detected in purified virions, the roles of this protein during KSHV replication have not been characterized. Using specific monoclonal antibodies, we revealed that ORF52 displays true late gene expression kinetics and confirmed its cytoplasmic localization in both transfected and KSHV-infected cells. We demonstrated that ORF52 comigrates with other known virion proteins...
Show moreAlthough Kaposi's sarcoma-associated herpesvirus (KSHV) ORF52 (also known as KSHV inhibitor of cGAS [KicGAS]) has been detected in purified virions, the roles of this protein during KSHV replication have not been characterized. Using specific monoclonal antibodies, we revealed that ORF52 displays true late gene expression kinetics and confirmed its cytoplasmic localization in both transfected and KSHV-infected cells. We demonstrated that ORF52 comigrates with other known virion proteins following sucrose gradient centrifugation. We also determined that ORF52 resides inside the viral envelope and remains partially associated with capsid when extracellular virions are treated with various detergents and/or salts. There results indicate that ORF52 is a tegument protein abundantly present in extracellular virions. To characterize the roles of ORF52 in the KSHV life cycle, we engineered a recombinant KSHV ORF52-null mutant virus and found that loss of ORF52 results in reduced virion production and a further defect in infectivity. Upon analysis of the virion composition of ORF52-null viral particles, we observed a decrease in the incorporation of ORF45, as well as other tegument proteins, suggesting that ORF52 is important for the packaging of other virion proteins. In summary, our results indicate that, in addition to its immune evasion function, KSHV ORF52 is required for the optimal production of infectious virions, likely due to its roles in virion assembly as a tegument protein. The tegument proteins of herpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), play key roles in the viral life cycle. Each of the three subfamilies of herpesviruses (alpha, beta, and gamma) encode unique tegument proteins with specialized functions. We recently found that one such gammaherpesvirus-specific protein, ORF52, has an important role in immune evasion during KSHV primary infection, through inhibition of the host cytosolic DNA sensing pathway. In this report, we further characterize ORF52 as a tegument protein with vital roles during KSHV lytic replication. We found that ORF52 is important for the production of infectious viral particles, likely through its role in virus assembly, a critical process for KSHV replication and pathogenesis. More comprehensive investigation of the functions of tegument proteins and their roles in viral replication may reveal novel targets for therapeutic interventions against KSHV-associated diseases.
Show less - Date Issued
- 2016-05-12
- Identifier
- FSU_pmch_27009954, 10.1128/JVI.02675-15, PMC4934757, 27009954, 27009954, JVI.02675-15
- Format
- Citation
- Title
- Hippocampal adult neurogenesis: Its regulation and potential role in spatial learning and memory..
- Creator
-
Lieberwirth, Claudia, Pan, Yongliang, Liu, Yan, Zhang, Zhibin, Wang, Zuoxin
- Abstract/Description
-
Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning...
Show moreAdult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk).
Show less - Date Issued
- 2016-08-01
- Identifier
- FSU_pmch_27174001, 10.1016/j.brainres.2016.05.015, PMC5064285, 27174001, 27174001, S0006-8993(16)30370-5
- Format
- Citation
- Title
- Noncompetitive affinity assays of glucagon and amylin using mirror-image aptamers as affinity probes.
- Creator
-
Yi, Lian, Wang, Xue, Bethge, Lucas, Klussmann, Sven, Roper, Michael G
- Abstract/Description
-
The ability to detect picomolar concentrations of glucagon and amylin using fluorescently labeled mirror-image aptamers, so-called Spiegelmers, is demonstrated. Spiegelmers rival the specificity of antibodies and overcome the problem of biostability of natural aptamers in a biological matrix. Using Spiegelmers as affinity probes, noncompetitive capillary electrophoresis affinity assays of glucagon and murine amylin were developed and optimized. The detection limit for glucagon was 6 pM and...
Show moreThe ability to detect picomolar concentrations of glucagon and amylin using fluorescently labeled mirror-image aptamers, so-called Spiegelmers, is demonstrated. Spiegelmers rival the specificity of antibodies and overcome the problem of biostability of natural aptamers in a biological matrix. Using Spiegelmers as affinity probes, noncompetitive capillary electrophoresis affinity assays of glucagon and murine amylin were developed and optimized. The detection limit for glucagon was 6 pM and for amylin was 40 pM. Glucagon-like peptide-1 and -2 did not interfere with the glucagon assay, while the amylin assay showed cross-reactivity to calcitonin gene related peptide. The developed assays were combined with a competitive immunoassay for insulin to measure glucagon, amylin, and insulin secretion from batches of islets after incubation with different glucose concentrations. The development of these assays is an important step towards incorporation into an online measurement system for monitoring dynamic secretion from single islets.
Show less - Date Issued
- 2016-03-21
- Identifier
- FSU_pmch_26881276, 10.1039/c5an02468d, PMC4783278, 26881276, 26881276
- Format
- Citation